Aad*_*hah 7 haskell functional-programming theorem-proving agda floyd-cycle-finding
我想将以下Haskell代码转换为Agda:
import Control.Arrow (first)
import Control.Monad (join)
safeTail :: [a] -> [a]
safeTail [] = []
safeTail (_:xs) = xs
floyd :: [a] -> [a] -> ([a], [a])
floyd xs [] = ([], xs)
floyd (x:xs) (_:ys) = first (x:) $ floyd xs (safeTail ys)
split :: [a] -> ([a], [a])
split = join floyd
Run Code Online (Sandbox Code Playgroud)
这使我们能够有效地将列表拆分为两个:
split [1,2,3,4,5] = ([1,2,3], [4,5])
split [1,2,3,4,5,6] = ([1,2,3], [4,5,6])
Run Code Online (Sandbox Code Playgroud)
所以,我试图将此代码转换为Agda:
floyd : {A : Set} ? List A ? List A ? List A × List A
floyd xs [] = ([] , xs)
floyd (x :: xs) (_ :: ys) = first (x ::_) (floyd xs (safeTail ys))
Run Code Online (Sandbox Code Playgroud)
唯一的问题是Agda抱怨说我错过了这个案子floyd [] (y :: ys).但是,这种情况永远不应该出现.我怎样才能向Agda证明这种情况永远不会出现?
以下是此算法如何工作的可视示例:
+-------------+-------------+
| Tortoise | Hare |
+-------------+-------------+
| ^ 1 2 3 4 5 | ^ 1 2 3 4 5 |
| 1 ^ 2 3 4 5 | 1 2 ^ 3 4 5 |
| 1 2 ^ 3 4 5 | 1 2 3 4 ^ 5 |
| 1 2 3 ^ 4 5 | 1 2 3 4 5 ^ |
+-------------+-------------+
Run Code Online (Sandbox Code Playgroud)
这是另一个例子:
+---------------+---------------+
| Tortoise | Hare |
+---------------+---------------+
| ^ 1 2 3 4 5 6 | ^ 1 2 3 4 5 6 |
| 1 ^ 2 3 4 5 6 | 1 2 ^ 3 4 5 6 |
| 1 2 ^ 3 4 5 6 | 1 2 3 4 ^ 5 6 |
| 1 2 3 ^ 4 5 6 | 1 2 3 4 5 6 ^ |
+---------------+---------------+
Run Code Online (Sandbox Code Playgroud)
当野兔(第二个参数floyd)到达列表的末尾时,乌龟(第一个参数floyd)到达列表的中间.因此,通过使用两个指针(第二个指针移动速度是第一个指针的两倍),我们可以有效地将列表拆分为两个.
与Twan van Laarhoven在评论中提出的相同但是与Vecs.他的版本可能更好.
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
?-step : ? {m n} -> m ? n -> m ? suc n
?-step z?n = z?n
?-step (s?s le) = s?s (?-step le)
?-refl : ? {n} -> n ? n
?-refl {0} = z?n
?-refl {suc n} = s?s ?-refl
floyd : ? {A : Set} {n m} -> m ? n -> Vec A n -> Vec A m -> List A × List A
floyd z?n xs [] = [] , toList xs
floyd (s?s z?n) (x ? xs) (y ? []) = x ? [] , toList xs
floyd (s?s (s?s le)) (x ? xs) (y ? z ? ys) = pmap (x ?_) id (floyd (?-step le) xs ys)
split : ? {A : Set} -> List A -> List A × List A
split xs = floyd ?-refl (fromList xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test? : split (1 ? 2 ? 3 ? 4 ? 5 ? []) ? (1 ? 2 ? 3 ? [] , 4 ? 5 ? [])
test? = refl
test? : split (1 ? 2 ? 3 ? 4 ? 5 ? 6 ? []) ? (1 ? 2 ? 3 ? [] , 4 ? 5 ? 6 ? [])
test? = refl
Run Code Online (Sandbox Code Playgroud)
此外,函数喜欢?-refl和?-step在标准库中的某个地方,但我懒得搜索.
这是我喜欢做的傻事:
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
floyd : ? {A : Set}
-> (k : ? -> ?)
-> (? {n} -> Vec A (k (suc n)) -> Vec A (suc (k n)))
-> ? n
-> Vec A (k n)
-> List A × List A
floyd k u 0 xs = [] , toList xs
floyd k u 1 xs with u xs
... | x ? xs' = x ? [] , toList xs'
floyd k u (suc (suc n)) xs with u xs
... | x ? xs' = pmap (x ?_) id (floyd (k ? suc) u n xs')
split : ? {A : Set} -> List A -> List A × List A
split xs = floyd id id (length xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test? : split (1 ? 2 ? 3 ? 4 ? 5 ? []) ? (1 ? 2 ? 3 ? [] , 4 ? 5 ? [])
test? = refl
test? : split (1 ? 2 ? 3 ? 4 ? 5 ? 6 ? []) ? (1 ? 2 ? 3 ? [] , 4 ? 5 ? 6 ? [])
test? = refl
Run Code Online (Sandbox Code Playgroud)
这部分是基于下面评论中的Benjamin Hodgson建议.
| 归档时间: |
|
| 查看次数: |
187 次 |
| 最近记录: |