yuk*_*yuk 15 matlab plot normal-distribution ellipse standard-deviation
我想在MATLAB中重现下图:

有两类具有X和Y坐标的点.我想用一个带有一个标准偏差参数的椭圆围绕每个类,它决定了椭圆沿轴线走多远.
这个图是用另一个软件创建的,我不太清楚它是如何计算椭圆的.
这是我用于此图的数据.第一列是第二列 - 第二列 - 第三列 - 第一列.我可以gscatter用来绘制点本身.
A = [
0 0.89287 1.54987
0 0.69933 1.81970
0 0.84022 1.28598
0 0.79523 1.16012
0 0.61266 1.12835
0 0.39950 0.37942
0 0.54807 1.66173
0 0.50882 1.43175
0 0.68840 1.58589
0 0.59572 1.29311
1 1.00787 1.09905
1 1.23724 0.98834
1 1.02175 0.67245
1 0.88458 0.36003
1 0.66582 1.22097
1 1.24408 0.59735
1 1.03421 0.88595
1 1.66279 0.84183
];
gscatter(A(:,2),A(:,3),A(:,1))
Run Code Online (Sandbox Code Playgroud)
仅供参考,这是关于如何绘制椭圆的SO问题.所以,我们只需知道绘制它的所有参数.
更新:
我同意可以将中心计算为X和Y坐标的平均值.可能我必须PRINCOMP对每个类使用主成分分析()来确定角度和形状.仍然在想...
Amr*_*mro 17
考虑一下代码:
%# generate data
num = 50;
X = [ mvnrnd([0.5 1.5], [0.025 0.03 ; 0.03 0.16], num) ; ...
mvnrnd([1 1], [0.09 -0.01 ; -0.01 0.08], num) ];
G = [1*ones(num,1) ; 2*ones(num,1)];
gscatter(X(:,1), X(:,2), G)
axis equal, hold on
for k=1:2
%# indices of points in this group
idx = ( G == k );
%# substract mean
Mu = mean( X(idx,:) );
X0 = bsxfun(@minus, X(idx,:), Mu);
%# eigen decomposition [sorted by eigen values]
[V D] = eig( X0'*X0 ./ (sum(idx)-1) ); %#' cov(X0)
[D order] = sort(diag(D), 'descend');
D = diag(D);
V = V(:, order);
t = linspace(0,2*pi,100);
e = [cos(t) ; sin(t)]; %# unit circle
VV = V*sqrt(D); %# scale eigenvectors
e = bsxfun(@plus, VV*e, Mu'); %#' project circle back to orig space
%# plot cov and major/minor axes
plot(e(1,:), e(2,:), 'Color','k');
%#quiver(Mu(1),Mu(2), VV(1,1),VV(2,1), 'Color','k')
%#quiver(Mu(1),Mu(2), VV(1,2),VV(2,2), 'Color','k')
end
Run Code Online (Sandbox Code Playgroud)

如果您希望椭圆表示特定的标准偏差水平,那么正确的做法是缩放协方差矩阵:
STD = 2; %# 2 standard deviations
conf = 2*normcdf(STD)-1; %# covers around 95% of population
scale = chi2inv(conf,2); %# inverse chi-squared with dof=#dimensions
Cov = cov(X0) * scale;
[V D] = eig(Cov);
Run Code Online (Sandbox Code Playgroud)
