numpy中高斯 - 勒让德正交的不同区间

Pau*_*aul 6 python numpy scipy numerical-integration

我们如何numpy.polynomial.legendre.leggauss在除了[-1, 1]?之外的时间间隔内使用NumPy包?


以下示例与scipy.integrate.quad间隔中的Gauss-Legendre方法进行比较[-1, 1].

import numpy as np
from scipy import integrate

# Define function and interval
a = -1.
b =  1.
f = lambda x: np.cos(x)

# Gauss-Legendre (default interval is [-1, 1])
deg = 6
x, w = np.polynomial.legendre.leggauss(deg)
gauss = sum(w * f(x))

# For comparison
quad, quad_err = integrate.quad(f, a, b)

print 'The QUADPACK solution: {0:.12} with error: {1:.12}'.format(quad, quad_err)
print 'Gauss-Legendre solution: {0:.12}'.format(gauss)
print 'Difference between QUADPACK and Gauss-Legendre: ', abs(gauss - quad)
Run Code Online (Sandbox Code Playgroud)

输出:

The QUADPACK solution: 1.68294196962 with error: 1.86844092378e-14
Gauss-Legendre solution: 1.68294196961
Difference between QUADPACK and Gauss-Legendre:  1.51301193796e-12
Run Code Online (Sandbox Code Playgroud)

War*_*ser 7

更改间隔,请将x值从[-1,1]转换为[a,b],例如,

t = 0.5*(x + 1)*(b - a) + a
Run Code Online (Sandbox Code Playgroud)

然后将(b - a)/ 2的正交公式进行缩放:

gauss = sum(w * f(t)) * 0.5*(b - a)
Run Code Online (Sandbox Code Playgroud)

这是您的示例的修改版本:

import numpy as np
from scipy import integrate

# Define function and interval
a = 0.0
b = np.pi/2
f = lambda x: np.cos(x)

# Gauss-Legendre (default interval is [-1, 1])
deg = 6
x, w = np.polynomial.legendre.leggauss(deg)
# Translate x values from the interval [-1, 1] to [a, b]
t = 0.5*(x + 1)*(b - a) + a
gauss = sum(w * f(t)) * 0.5*(b - a)

# For comparison
quad, quad_err = integrate.quad(f, a, b)

print 'The QUADPACK solution: {0:.12} with error: {1:.12}'.format(quad, quad_err)
print 'Gauss-Legendre solution: {0:.12}'.format(gauss)
print 'Difference between QUADPACK and Gauss-Legendre: ', abs(gauss - quad)
Run Code Online (Sandbox Code Playgroud)

它打印:

The QUADPACK solution: 1.0 with error: 1.11022302463e-14
Gauss-Legendre solution: 1.0
Difference between QUADPACK and Gauss-Legendre:  4.62963001269e-14