use*_*261 5 matlab symbolic-math mupad
我在尝试使符号替换变得更快时遇到了很多麻烦 - 也就是说,在符号表达式中替换变量并获得双精度变量.
我正在创建一个复杂的函数f,并计算其jacobian df.这是合理的速度,我可以将它保存到文件中.但是当我尝试使用matlabFunction甚至是disp或fprintf时,系统会挂起并无法继续进行(即使matlabFunction设置为未优化).这是一个主要问题,因为我需要能够进行合理快速的替换.
f矢量是24个元素,Jacobian是24 x 78(虽然这里只显示了70个变量,所以这可以压缩到70列;但我怀疑这是问题).
我也知道f和df的某些元素很简单,单独访问时工作正常,但是f和df的某些更复杂的元素无法显示.我想它们很长,但是因为它们计算得很好,所以我不能将它们转换成matlab函数或显示.
更奇怪的是,我可以替换所有符号变量,但是完全替换的f向量的最终显示(例如,通过disp),或者转换为double(通过double())似乎需要永远.
如果你想使用.mat文件,你可以在这里得到它(filedropper链接,它是288kb).我该怎么做才能在合理的时间内写出这个文件?
注意:从评论的角度来看,我专注于这个问题:
它是矩阵乘法和加法的结果.我已经尝试使用simplify命令简化它,但是速度非常慢.我已经成功地将f写入未经优化的文件(没有运气df) - 花了2个小时 - 但随后评估它需要0.8秒,这太慢了.我需要能够在大约0.02秒内完成评估.
我开始查看你的元素f,这很简单f(12).然而,f(13)释放出来的地狱:
>> inp.f(13)
ans =
(2289*l4)/100 - (11371197146449238679*l3)/8112963841460668169578900514406400 - (2289*l2)/100 + (11371197146449238679*l5)/8112963841460668169578900514406400 - (2289*l8)/100 - (11371197146449238679*l9)/8112963841460668169578900514406400 + (2289*l10)/100 + (11371197146449238679*l11)/8112963841460668169578900514406400 - (2289*l14)/100 - (11371197146449238679*l15)/8112963841460668169578900514406400 + (2289*l16)/100 + (11371197146449238679*l17)/8112963841460668169578900514406400 - (2289*l20)/100 - (11371197146449238679*l21)/8112963841460668169578900514406400 + (2289*l22)/100 + (11371197146449238679*l23)/8112963841460668169578900514406400 - (2289*l26)/100 - (11371197146449238679*l27)/8112963841460668169578900514406400 + (2289*l28)/100 + (11371197146449238679*l29)/8112963841460668169578900514406400 - (2289*l32)/100 - (11371197146449238679*l33)/8112963841460668169578900514406400 + (2289*l34)/100 + (11371197146449238679*l35)/8112963841460668169578900514406400 - h1*(((cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2)) + (sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2))*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - cos(x5/2)^2*cos(x6/2)*sin(x6/2))*(((x17*(cos(x4/2)*cos(x5/2)*(cos(x6/2)*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) + sin(x6/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2))) - cos(x5/2)*sin(x4/2)*(cos(x6/2)*(cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2)) + sin(x6/2)*(cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2)))))/2 - (x18*(cos(x4/2)^2*cos(x5/2)^2 + cos(x5/2)^2*sin(x4/2)^2 + sin(x5/2)^2))/2 + (x16*(sin(x5/2)*(cos(x5/2)^2*cos(x6/2)^2 + cos(x5/2)^2*sin(x6/2)^2 + sin(x5/2)^2) + cos(x5/2)*sin(x4/2)*(cos(x5/2)*sin(x4/2)*sin(x5/2) + cos(x5/2)*cos(x6/2)*(cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2)) - cos(x5/2)*sin(x6/2)*(cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))) + cos(x4/2)*cos(x5/2)*(cos(x4/2)*cos(x5/2)*sin(x5/2) - cos(x5/2)*cos(x6/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + cos(x5/2)*sin(x6/2)*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)))))/2 - (x19*cos(x5/2)*sin(x4/2))/2)*((LEG_MASS*((cos(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + cos(x5/2)*cos(x6/2)*sin(x7/2))*((cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(x2/2 - BASE_ORIGIN_Z*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - (cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*sin(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) - (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(x1/2 + BASE_ORIGIN_Z*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*cos(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) + cos(x5/2)*sin(x4/2)*(x3/2 - sin(x5/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4) + BASE_ORIGIN_Z*cos(x4/2)*cos(x5/2) - cos(x5/2)*sin(x4/2)*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2))) - (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*((sin(x5/2)*sin(x7/2) - cos(x4/2)*cos(x5/2)*cos(x7/2))*(x3/2 - sin(x5/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4) + BASE_ORIGIN_Z*cos(x4/2)*cos(x5/2) - cos(x5/2)*sin(x4/2)*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2)) - (cos(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + cos(x5/2)*cos(x6/2)*sin(x7/2))*(x1/2 + BASE_ORIGIN_Z*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*cos(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) + (cos(x7/2)*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - cos(x5/2)*sin(x6/2)*sin(x7/2))*(x2/2 - BASE_ORIGIN_Z*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - (cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*sin(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4))))*(sin(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) - cos(x5/2)*cos(x6/2)*cos(x7/2)) - LEG_MASS*((sin(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) - cos(x5/2)*cos(x6/2)*cos(x7/2))*((cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(x2/2 - BASE_ORIGIN_Z*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - (cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*sin(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) - (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(x1/2 + BASE_ORIGIN_Z*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*cos(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) + cos(x5/2)*sin(x4/2)*(x3/2 - sin(x5/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4) + BASE_ORIGIN_Z*cos(x4/2)*cos(x5/2) - cos(x5/2)*sin(x4/2)*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2))) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*((cos(x7/2)*sin(x5/2) + cos(x4/2)*cos(x5/2)*sin(x7/2))*(x3/2 - sin(x5/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4) + BASE_ORIGIN_Z*cos(x4/2)*cos(x5/2) - cos(x5/2)*sin(x4/2)*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2)) + (sin(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) - cos(x5/2)*cos(x6/2)*cos(x7/2))*(x1/2 + BASE_ORIGIN_Z*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*cos(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) - (sin(x7/2)*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) + cos(x5/2)*cos(x7/2)*sin(x6/2))*(x2/2 - BASE_ORIGIN_Z*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - (cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*sin(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4))))*(cos(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + cos(x5/2)*cos(x6/2)*sin(x7/2)) + LEG_MASS*(cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*((cos(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + cos(x5/2)*cos(x6/2)*sin(x7/2))*((cos(x7/2)*sin(x5/2) + cos(x4/2)*cos(x5/2)*sin(x7/2))*(x3/2 - sin(x5/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4) + BASE_ORIGIN_Z*cos(x4/2)*cos(x5/2) - cos(x5/2)*sin(x4/2)*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2)) + (sin(x7/2)*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) - cos(x5/2)*cos(x6/2)*cos(x7/2))*(x1/2 + BASE_ORIGIN_Z*(sin(x4/2)*sin(x6/2) + cos(x4/2)*cos(x6/2)*sin(x5/2)) + (cos(x4/2)*sin(x6/2) - cos(x6/2)*sin(x4/2)*sin(x5/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + cos(x5/2)*cos(x6/2)*(BASE_ORIGIN_X - BASE_LINK_EXTENTS_X/4)) - (sin(x7/2)*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) + cos(x5/2)*cos(x7/2)*sin(x6/2))*(x2/2 - BASE_ORIGIN_Z*(cos(x6/2)*sin(x4/2) - cos(x4/2)*sin(x5/2)*sin(x6/2)) - (cos(x4/2)*cos(x6/2) + sin(x4/2)*sin(x5/2)*sin(x6/2))*(BASE_LINK_EXTENTS_Y/2 - BASE_ORIGIN_Y + LEG_LINK_EXTENTS_Y/2) + [...] ... Output truncated. Text exceeds maximum line length of 25,000 characters for Command Window display.
Run Code Online (Sandbox Code Playgroud)
(实际输出被截断以适应SO的30k字符限制,但是你得到了交易)
我打赌解析器matlabFunction并不是为了这么大的输入.还有一些奇怪的东西:像大小的整数字符串文字8e33.
所以我仔细看了看你的功能.幸运的是,您可以将函数转换为字符串,然后处理这些函数,这些函数仅占用CPU时间而非内存.
Preproc:
for k=1:24
fstring2{k}=char(inp.f(k));
end
Run Code Online (Sandbox Code Playgroud)
功能长度:
>> cellfun(@length,fstring2)
ans =
Columns 1 through 12
11 11 11 11 11 11 11 11 11 11 11 11
Columns 13 through 24
2301006 2300241 2299996 8425640 8416273 8424306 1375443 1305245 1302440 1237876 1381084 1310884
Run Code Online (Sandbox Code Playgroud)
休斯顿,我们遇到了问题.
这些巨大的符号功能组件会破坏matlabFunction操作期间内存不足的解析器,或者更可能的内存.我确实在我尝试的时候simplify f(13),在几秒钟内丢失了8 GB的更好的一半.
正如概念验证一样,我试图嘲笑你的功能所涉及的计算工作量.我检查了f(13)(第一个野兽).有关操作的一些信息:
>> length(strfind(char(inp.f(13)),'*'))
ans =
134710
>> length(strfind(char(inp.f(13)),'+'))
ans =
36932
>> length(strfind(char(inp.f(13)),'-'))
ans =
26855
>> length(strfind(char(inp.f(13)),'/'))
ans =
183380
>> length(strfind(char(inp.f(13)),'ln'))
ans =
0
>> length(strfind(char(inp.f(13)),'exp'))
ans =
0
>> length(strfind(char(inp.f(13)),'cos'))
ans =
78700
>> length(strfind(char(inp.f(13)),'sin'))
ans =
84142
Run Code Online (Sandbox Code Playgroud)
我试图计算涉及相似数量的操作的模拟计算:
x=zeros(36000,1);
tic;
for k=1:36000
x(k)=(((sin(sin(((cos(cos(3.1+2.1)*3.1)*6.1)*5.1)*9.1)/4.1)/3.1)/6.1)/5.1)/8.1;
end
toc;
Elapsed time is 0.010895 seconds.
Run Code Online (Sandbox Code Playgroud)
这包括36000添加,144000乘法,180000除法和72000调用,sin以及cos每个.
现在,如果我们假设这是一个正确的球场图,如果我们假设你的函数有类似的操作分布,那么你正在查看40080434函数的字符,这是17个等价f(13)单位.这表明,即使您可以转换为正确的matlab函数,您的运行时只需调用f(我们还没有查看df)至少需要0.1-0.2秒.
由于你的问题的性质,我不确定是否有办法绕过它.我可能会尝试使用sympyin python,在那里你也可以转换为lambda(一个匿名函数的python等价物)用于数值计算.如果这会成功,那么至少你可以尽快使用你的功能.
在发布不太乐观的答案后,我相信我已成功将您的功能转换为匿名功能.它很脏,但似乎有效.
首先,将函数转换为上面的字符串,然后用于symvar提取变量名称.然后使用这些函数名创建函数定义; 不幸的是,我只能用它来破解它eval.这里应该是一个更优雅的方式,但无论如何,我们感兴趣的是可以实现的运行时间.
varcell=symvar(fstring2{13}); %variables of inp.f(13)
vars2=strcat(varcell,','); %add a comma to each var
vars3=[vars2{:}]; %put them into a single string
vars3=vars3(1:end-1); %remove trailing comma
f13=eval(['@(' v3 ') ' fstring2{13}]); %this is your numeric function
Run Code Online (Sandbox Code Playgroud)
转换是讨厌的,但匿名函数的实际构造很快,而且内存不太难.虚拟运行时:
>> tic; ftry(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), toc
ans =
1.1417e+06
Elapsed time is 0.069252 seconds.
Run Code Online (Sandbox Code Playgroud)
它可以更加用户友好,例如允许在函数中进行数组操作,或者将所有58个输入作为单个数组输入传递.但是你的运行时会是一样的.这只是一个功能,你大约有17个功能.你可能永远不会得到你希望的加速.
(无论如何,我确实开始了
线程"AWT-EventQueue-0"中的异常java.lang.OutOfMemoryError:Java堆空间
这整个考验之后的错误,所以它的成功也可能取决于你对"成功"的定义;)