好吧,似乎我完成了这个难题:
主要步骤:
findRelativePositions
和getPosition
).buildPuzzle
和builfForPiece
)buildPuzzle
).在步骤1中的片A和B之间的比较是在检查相似性(绝对差的总和)之间进行的:
由于图像不重叠,但我们可以假设限制行(列)非常相似,关键方面是使用(ad-hoc)阈值来区分限制部分.这是在函数中处理的getPosition
,具有阈值参数threshold
.
这里是完整的代码.如果不清楚,请告诉我.
#include <opencv2\opencv.hpp>
#include <algorithm>
#include <set>
using namespace std;
using namespace cv;
enum Direction
{
NORTH = 0,
SOUTH,
WEST,
EAST
};
int getPosition(const Mat3b& A, const Mat3b& B, double& cost)
{
Mat hsvA, hsvB;
cvtColor(A, hsvA, COLOR_BGR2HSV);
cvtColor(B, hsvB, COLOR_BGR2HSV);
int threshold = 1000;
// Check NORTH
Mat3b AN = hsvA(Range(0, 1), Range::all());
Mat3b BS = hsvB(Range(B.rows - 1, B.rows), Range::all());
Mat3b AN_BS;
absdiff(AN, BS, AN_BS);
Scalar scoreN = sum(AN_BS);
// Check SOUTH
Mat3b AS = hsvA(Range(A.rows - 1, A.rows), Range::all());
Mat3b BN = hsvB(Range(0, 1), Range::all());
Mat3b AS_BN;
absdiff(AS, BN, AS_BN);
Scalar scoreS = sum(AS_BN);
// Check WEST
Mat3b AW = hsvA(Range::all(), Range(A.cols - 1, A.cols));
Mat3b BE = hsvB(Range::all(), Range(0, 1));
Mat3b AW_BE;
absdiff(AW, BE, AW_BE);
Scalar scoreW = sum(AW_BE);
// Check EAST
Mat3b AE = hsvA(Range::all(), Range(0, 1));
Mat3b BW = hsvB(Range::all(), Range(B.cols - 1, B.cols));
Mat3b AE_BW;
absdiff(AE, BW, AE_BW);
Scalar scoreE = sum(AE_BW);
vector<double> scores{ scoreN[0], scoreS[0], scoreW[0], scoreE[0] };
int idx_min = distance(scores.begin(), min_element(scores.begin(), scores.end()));
int direction = (scores[idx_min] < threshold) ? idx_min : -1;
cost = scores[idx_min];
return direction;
}
void resolveConflicts(Mat1i& positions, Mat1d& costs)
{
for (int c = 0; c < 4; ++c)
{
// Search for duplicate pieces in each column
set<int> pieces;
set<int> dups;
for (int r = 0; r < positions.rows; ++r)
{
int label = positions(r, c);
if (label >= 0)
{
if (pieces.count(label) == 1)
{
dups.insert(label);
}
else
{
pieces.insert(label);
}
}
}
if (dups.size() > 0)
{
int min_idx = -1;
for (int duplicate : dups)
{
// Find minimum cost position
Mat1d column = costs.col(c);
min_idx = distance(column.begin(), min_element(column.begin(), column.end()));
// Keep only minimum cost position
for (int ir = 0; ir < positions.rows; ++ir)
{
int label = positions(ir, c);
if ((label == duplicate) && (ir != min_idx))
{
positions(ir, c) = -1;
}
}
}
}
}
}
void findRelativePositions(const vector<Mat3b>& pieces, Mat1i& positions)
{
positions = Mat1i(pieces.size(), 4, -1);
Mat1d costs(pieces.size(), 4, DBL_MAX);
for (int i = 0; i < pieces.size(); ++i)
{
for (int j = i + 1; j < pieces.size(); ++j)
{
double cost;
int pos = getPosition(pieces[i], pieces[j], cost);
if (pos >= 0)
{
if (costs(i, pos) > cost)
{
positions(i, pos) = j;
costs(i, pos) = cost;
switch (pos)
{
case NORTH:
positions(j, SOUTH) = i;
costs(j, SOUTH) = cost;
break;
case SOUTH:
positions(j, NORTH) = i;
costs(j, NORTH) = cost;
break;
case WEST:
positions(j, EAST) = i;
costs(j, EAST) = cost;
break;
case EAST:
positions(j, WEST) = i;
costs(j, WEST) = cost;
break;
}
}
}
}
}
resolveConflicts(positions, costs);
}
void builfForPiece(int idx_piece, set<int>& posed, Mat1i& labels, const Mat1i& positions)
{
Point pos(-1, -1);
// Find idx_piece on grid;
for (int r = 0; r < labels.rows; ++r)
{
for (int c = 0; c < labels.cols; ++c)
{
if (labels(r, c) == idx_piece)
{
pos = Point(c, r);
break;
}
}
if (pos.x >= 0) break;
}
if (pos.x < 0) return;
// Put connected pieces
for (int c = 0; c < 4; ++c)
{
int next = positions(idx_piece, c);
if (next > 0)
{
switch (c)
{
case NORTH:
labels(Point(pos.x, pos.y - 1)) = next;
posed.insert(next);
break;
case SOUTH:
labels(Point(pos.x, pos.y + 1)) = next;
posed.insert(next);
break;
case WEST:
labels(Point(pos.x + 1, pos.y)) = next;
posed.insert(next);
break;
case EAST:
labels(Point(pos.x - 1, pos.y)) = next;
posed.insert(next);
break;
}
}
}
}
Mat3b buildPuzzle(const vector<Mat3b>& pieces, const Mat1i& positions, Size sz)
{
int n_pieces = pieces.size();
set<int> posed;
set<int> todo;
for (int i = 0; i < n_pieces; ++i) todo.insert(i);
Mat1i labels(n_pieces * 2 + 1, n_pieces * 2 + 1, -1);
// Place first element in the center
todo.erase(0);
labels(Point(n_pieces, n_pieces)) = 0;
posed.insert(0);
builfForPiece(0, posed, labels, positions);
// Build puzzle starting from the already placed elements
while (todo.size() > 0)
{
auto it = todo.begin();
int next = -1;
do
{
next = *it;
++it;
} while (posed.count(next) == 0 && it != todo.end());
todo.erase(next);
builfForPiece(next, posed, labels, positions);
}
// Posed all pieces, now collage!
vector<Point> pieces_position;
Mat1b mask = labels >= 0;
findNonZero(mask, pieces_position);
Rect roi = boundingRect(pieces_position);
Mat1i lbls = labels(roi);
Mat3b collage(roi.height * sz.height, roi.width * sz.width, Vec3b(0, 0, 0));
for (int r = 0; r < lbls.rows; ++r)
{
for (int c = 0; c < lbls.cols; ++c)
{
if (lbls(r, c) >= 0)
{
Rect rect(c*sz.width, r*sz.height, sz.width, sz.height);
pieces[lbls(r, c)].copyTo(collage(rect));
}
}
}
return collage;
}
int main()
{
// Load images
vector<String> filenames;
glob("D:\\SO\\img\\puzzle*", filenames);
vector<Mat3b> pieces(filenames.size());
for (int i = 0; i < filenames.size(); ++i)
{
pieces[i] = imread(filenames[i], IMREAD_COLOR);
}
// Find Relative positions
Mat1i positions;
findRelativePositions(pieces, positions);
// Build the puzzle
Mat3b puzzle = buildPuzzle(pieces, positions, pieces[0].size());
imshow("Puzzle", puzzle);
waitKey();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
注意
编辑
添加更多拼图会在之前的代码版本中生成错误的结果.这是因为(错误的)假设最多一件作品足以与一件作品相连.
现在我添加了一个成本矩阵,只有最小成本块被保存为给定块的邻居.我还添加了一个resolveConflicts
函数,可以避免一个部分与多个部分合并(在非冲突位置).
这是添加更多部分的结果:
UPDATE
增加拼图数量后的注意事项:
小智 0
将这些图像加载为 OpenCV Mat 后,您可以使用以下方法垂直或水平连接这些 Mat:
Mat A, B; // Images that will be concatenated
Mat H; // Here we will concatenate A and B horizontally
Mat V; // Here we will concatenate A and B vertically
hconcat(A, B, H);
vconcat(A, B, V);
Run Code Online (Sandbox Code Playgroud)
如果需要连接两个以上的图像,可以递归地使用这些方法。
顺便说一句,我认为这些方法没有包含在 OpenCV 文档中,但我过去使用过它们。