Joã*_*rte 6 apache-spark apache-spark-sql
我想保存(作为镶木地板文件)包含自定义类作为列的Spark DataFrame.该类由另一个自定义类的Seq组成.为此,我以与VectorUDT类似的方式为每个类创建一个UserDefinedType类.我可以按照我的意图使用数据框,但不能将它作为镶木地板(或jason)保存到磁盘我将其报告为错误,但可能我的代码存在问题.我已经实现了一个更简单的示例来显示问题:
import org.apache.spark.sql.SaveMode
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.GenericMutableRow
import org.apache.spark.sql.types._
@SQLUserDefinedType(udt = classOf[AUDT])
case class A(list:Seq[B])
class AUDT extends UserDefinedType[A] {
override def sqlType: DataType = StructType(Seq(StructField("list", ArrayType(BUDT, containsNull = false), nullable = true)))
override def userClass: Class[A] = classOf[A]
override def serialize(obj: Any): Any = obj match {
case A(list) =>
val row = new GenericMutableRow(1)
row.update(0, new GenericArrayData(list.map(_.asInstanceOf[Any]).toArray))
row
}
override def deserialize(datum: Any): A = {
datum match {
case row: InternalRow => new A(row.getArray(0).toArray(BUDT).toSeq)
}
}
}
object AUDT extends AUDT
@SQLUserDefinedType(udt = classOf[BUDT])
case class B(num:Int)
class BUDT extends UserDefinedType[B] {
override def sqlType: DataType = StructType(Seq(StructField("num", IntegerType, nullable = false)))
override def userClass: Class[B] = classOf[B]
override def serialize(obj: Any): Any = obj match {
case B(num) =>
val row = new GenericMutableRow(1)
row.setInt(0, num)
row
}
override def deserialize(datum: Any): B = {
datum match {
case row: InternalRow => new B(row.getInt(0))
}
}
}
object BUDT extends BUDT
object TestNested {
def main(args:Array[String]) = {
val col = Seq(new A(Seq(new B(1), new B(2))),
new A(Seq(new B(3), new B(4))))
val sc = new SparkContext(new SparkConf().setMaster("local[1]").setAppName("TestSpark"))
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df = sc.parallelize(1 to 2 zip col).toDF()
df.show()
df.write.mode(SaveMode.Overwrite).save(...)
}
}
Run Code Online (Sandbox Code Playgroud)
这会导致以下错误:
15/09/16 16:44:39错误执行程序:阶段1.0中的任务0.0中的异常(TID 1)java.lang.IllegalArgumentException:应重复嵌套类型:必需的组数组{required int32 num; } org.apache.parquet.schema.ConversionPatterns.listWrapper(ConversionPatterns.java:42)位于org.apache.spark.sql.exe的org.apache.parquet.schema.ConversionPatterns.listType(ConversionPatterns.java:97).位于org.apache.spark.sql.execution的org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:318)中的datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:460). datasources.parquet.CatalystSchemaConverter $$ anonfun $ convertField $ 1.适用(CatalystSchemaConverter.scala:522)在org.apache.spark.sql.execution.datasources.parquet.
如果使用B而不是A保存数据框,则存在没有问题,因为B没有嵌套的自定义类.我错过了什么吗?
我必须对您的代码进行四处更改才能使其工作(在 Linux 上的 Spark 1.6.0 中进行测试),我想我基本上可以解释为什么需要它们。然而,我确实想知道是否有更简单的解决方案。所有更改均在 中AUDT
,如下:
sqlType
,使其依赖于BUDT.sqlType
,而不仅仅是BUDT
。serialize()
,调用BUDT.serialize()
每个列表元素。deserialize()
:
toArray(BUDT.sqlType)
而不是toArray(BUDT)
BUDT.deserialize()
每个元素这是生成的代码:
class AUDT extends UserDefinedType[A] {
override def sqlType: DataType =
StructType(
Seq(StructField("list",
ArrayType(BUDT.sqlType, containsNull = false),
nullable = true)))
override def userClass: Class[A] = classOf[A]
override def serialize(obj: Any): Any =
obj match {
case A(list) =>
val row = new GenericMutableRow(1)
val elements =
list.map(_.asInstanceOf[Any])
.map(e => BUDT.serialize(e))
.toArray
row.update(0, new GenericArrayData(elements))
row
}
override def deserialize(datum: Any): A = {
datum match {
case row: InternalRow =>
val first = row.getArray(0)
val bs:Array[InternalRow] = first.toArray(BUDT.sqlType)
val bseq = bs.toSeq.map(e => BUDT.deserialize(e))
val a = new A(bseq)
a
}
}
}
Run Code Online (Sandbox Code Playgroud)
A
所有四个更改都具有相同的特征: s 的处理和 s 的处理之间的关系B
现在非常明确:对于模式类型、序列化和反序列化。原始代码似乎基于 Spark SQL 会“弄清楚”的假设,这可能是合理的,但显然事实并非如此。
归档时间: |
|
查看次数: |
1727 次 |
最近记录: |