Roc曲线和切断点.蟒蛇.

Shi*_*ash 42 python roc logistic-regression

我正在运行一个逻辑模型,我预测了logit值.我用了 :

 from sklearn import metrics
 fpr, tpr, thresholds = metrics.roc_curve(Y_test,p)
Run Code Online (Sandbox Code Playgroud)

我知道metric.roc_auc_score将给出曲线下面积但是任何人都可以让我知道找到最佳截止点(阈值)的命令是什么.

Man*_*han 44

虽然回答很晚,但思想可能会有所帮助.您可以使用epiR中的包(此处!)来执行此操作,但是我在python中找不到类似的包或示例.

最佳的分界点会在那里true positive ratefalse positive rate.基于这个逻辑,我在下面举了一个例子来找到最佳阈值.

Python代码:

import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np
from sklearn.metrics import roc_curve, auc

# read the data in
df = pd.read_csv("http://www.ats.ucla.edu/stat/data/binary.csv")

# rename the 'rank' column because there is also a DataFrame method called 'rank'
df.columns = ["admit", "gre", "gpa", "prestige"]
# dummify rank
dummy_ranks = pd.get_dummies(df['prestige'], prefix='prestige')
# create a clean data frame for the regression
cols_to_keep = ['admit', 'gre', 'gpa']
data = df[cols_to_keep].join(dummy_ranks.ix[:, 'prestige_2':])

# manually add the intercept
data['intercept'] = 1.0

train_cols = data.columns[1:]
# fit the model
result = sm.Logit(data['admit'], data[train_cols]).fit()
print result.summary()

# Add prediction to dataframe
data['pred'] = result.predict(data[train_cols])

fpr, tpr, thresholds =roc_curve(data['admit'], data['pred'])
roc_auc = auc(fpr, tpr)
print("Area under the ROC curve : %f" % roc_auc)

####################################
# The optimal cut off would be where tpr is high and fpr is low
# tpr - (1-fpr) is zero or near to zero is the optimal cut off point
####################################
i = np.arange(len(tpr)) # index for df
roc = pd.DataFrame({'fpr' : pd.Series(fpr, index=i),'tpr' : pd.Series(tpr, index = i), '1-fpr' : pd.Series(1-fpr, index = i), 'tf' : pd.Series(tpr - (1-fpr), index = i), 'thresholds' : pd.Series(thresholds, index = i)})
roc.ix[(roc.tf-0).abs().argsort()[:1]]

# Plot tpr vs 1-fpr
fig, ax = pl.subplots()
pl.plot(roc['tpr'])
pl.plot(roc['1-fpr'], color = 'red')
pl.xlabel('1-False Positive Rate')
pl.ylabel('True Positive Rate')
pl.title('Receiver operating characteristic')
ax.set_xticklabels([])
Run Code Online (Sandbox Code Playgroud)

最佳截止点为0.317628,因此高于此值的任何值都可以标记为1,否则为0.您可以从输出/图表中看到tpr与1-fpr交叉的位置,tpr为63%,fpr为36%,tpr-( 1-fpr)在当前示例中最接近零.

输出:

        1-fpr       fpr        tf     thresholds       tpr
  171  0.637363  0.362637  0.000433    0.317628     0.637795
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

希望这是有帮助的.

编辑

为了简化和引入可重用性,我已经找到了找到最佳概率截止点的函数.

Python代码:

def Find_Optimal_Cutoff(target, predicted):
    """ Find the optimal probability cutoff point for a classification model related to event rate
    Parameters
    ----------
    target : Matrix with dependent or target data, where rows are observations

    predicted : Matrix with predicted data, where rows are observations

    Returns
    -------     
    list type, with optimal cutoff value

    """
    fpr, tpr, threshold = roc_curve(target, predicted)
    i = np.arange(len(tpr)) 
    roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 'threshold' : pd.Series(threshold, index=i)})
    roc_t = roc.ix[(roc.tf-0).abs().argsort()[:1]]

    return list(roc_t['threshold']) 


# Add prediction probability to dataframe
data['pred_proba'] = result.predict(data[train_cols])

# Find optimal probability threshold
threshold = Find_Optimal_Cutoff(data['admit'], data['pred_proba'])
print threshold
# [0.31762762459360921]

# Find prediction to the dataframe applying threshold
data['pred'] = data['pred_proba'].map(lambda x: 1 if x > threshold else 0)

# Print confusion Matrix
from sklearn.metrics import confusion_matrix
confusion_matrix(data['admit'], data['pred'])
# array([[175,  98],
#        [ 46,  81]])
Run Code Online (Sandbox Code Playgroud)

  • @ skmathur,我把它作为重用性和简化的功能.希望这可以帮助. (4认同)
  • @JohnBonfardeci 只有我吗?我感觉 OPs 解决方案产生了错误的结果..不应该是 `pd.Series(tpr-fpr, index=thresholds, name='tf').idxmax()` 吗? (4认同)
  • “Find_Optimal_Cutoff”函数中的约登指数公式存在问题。`roc_curve` 返回 `fpr`,这是误报率(1-特异性)。您正在减去`(1-fpr)`。您需要将 `tpr-(1-fpr)` 更改为 `tpr-fpr`。 (2认同)

cgn*_*utt 28

给定tpr,fpr,来自问题的阈值,最佳阈值的答案就是:

optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_idx]
Run Code Online (Sandbox Code Playgroud)

  • 你能澄清一下吗?鉴于问题的限制,你的问题没有意义.假阳性和真阳性率加1,均在0和1之间. (3认同)

lee*_*lee 12

香草Python实现Youden的J-Score

def cutoff_youdens_j(fpr,tpr,thresholds):
    j_scores = tpr-fpr
    j_ordered = sorted(zip(j_scores,thresholds))
    return j_ordered[-1][1]
Run Code Online (Sandbox Code Playgroud)


Max*_*ini 8

另一种可能的解决方案。

我将创建一些随机数据。

import numpy as np
import pandas as pd
import scipy.stats as sps
from sklearn import linear_model
from sklearn.metrics import roc_curve, RocCurveDisplay, auc
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

# define data distributions
N0 = 300
N1 = 250

dist0 = sps.gamma(a=8, scale=1/10)
x0 = np.linspace(dist0.ppf(0), dist0.ppf(1-1e-5), 100)
y0 = dist0.pdf(x0)

dist1 = sps.gamma(a=15, scale=1/10)
x1 = np.linspace(dist1.ppf(0), dist1.ppf(1-1e-5), 100)
y1 = dist1.pdf(x1)

with plt.style.context("bmh"):
    plt.plot(x0, y0, label="NEG")
    plt.plot(x1, y1, label="POS")
    plt.legend()
    plt.title("Gamma distributions")
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

# create a random dataset
rvs0 = dist0.rvs(N0, random_state=0)
rvs1 = dist1.rvs(N1, random_state=1)

with plt.style.context("bmh"):
    plt.hist(rvs0, alpha=.5, label="NEG")
    plt.hist(rvs1, alpha=.5, label="POS")
    plt.legend()
    plt.title("Random dataset")
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

使用观察值初始化数据框(x 特征和 y 目标)

df = pd.DataFrame({
    "y": np.concatenate(( np.repeat(0, N0) , np.repeat(1, N1) )),
    "x": np.concatenate(( rvs0             , rvs1             )),
})
Run Code Online (Sandbox Code Playgroud)

并用箱线图显示它

# plot the data
with plt.style.context("bmh"):
    g = sns.catplot(
        kind="box",
        data=df,
        x="y", y="x"
    )
    ax = g.axes.flat[0]
    sns.stripplot(
        data=df,
        x="y", y="x",
        ax=ax, color='k',
        alpha=.25
    )
    plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

现在,我们可以将数据帧拆分为训练测试,执行逻辑回归,计算 ROC 曲线、AUC、Youden 指数,找到截止点并绘制所有内容。全部使用pandas

# split dataset into train-test
X_train, X_test, y_train, y_test = train_test_split(
    df[["x"]], df.y.values, test_size=0.5, random_state=1)
# init and fit Logistic Regression on train set
clf = linear_model.LogisticRegression()
clf.fit(X_train, y_train)
# predict probabilities on x test set
y_proba = clf.predict_proba(X_test)
# compute FPR and TPR from y test set and predicted probabilities
fpr, tpr, thresholds = roc_curve(
    y_test, y_proba[:,1], drop_intermediate=False)
# compute ROC AUC
roc_auc = auc(fpr, tpr)
# init a dataframe for results
df_test = pd.DataFrame({
    "x": X_test.x.values.flatten(),
    "y": y_test,
    "proba": y_proba[:,1]
})
# sort it by predicted probabilities
# because thresholds[1:] = y_proba[::-1]
df_test.sort_values(by="proba", inplace=True)
# add reversed TPR and FPR
df_test["tpr"] = tpr[1:][::-1]
df_test["fpr"] = fpr[1:][::-1]
# optional: add thresholds to check
#df_test["thresholds"] = thresholds[1:][::-1]
# add Youden's j index
df_test["youden_j"] = df_test.tpr - df_test.fpr
# define the cut_off and diplay it
cut_off = df_test.sort_values(
    by="youden_j", ascending=False, ignore_index=True).iloc[0]
print("CUT-OFF:")
print(cut_off)

# plot everything
with plt.style.context("bmh"):
    fig, ax = plt.subplots(1, 3, figsize=(15, 5))
    
    RocCurveDisplay(
        fpr=df_test.fpr, tpr=df_test.tpr,
        roc_auc=roc_auc).plot(ax=ax[0])
    ax[0].set_title("ROC curve")
    ax[0].axline(xy1=(0,0), slope=1, color="r", ls=":")
    ax[0].plot(cut_off.fpr, cut_off.tpr, 'ko', ms=10)
    
    df_test.plot(
        x="youden_j", y="proba", ax=ax[1], 
        ylabel="Predicted Probabilities", xlabel="Youden j",
        title="Youden's index", legend=False
    )
    ax[1].axvline(cut_off.youden_j, color="k", ls="--")
    ax[1].axhline(cut_off.proba, color="k", ls="--")
    
    df_test.plot(
        x="x", y="proba", ax=ax[2], 
        ylabel="Predicted Probabilities", xlabel="X Feature",
        title="Cut-Off", legend=False
    )
    ax[2].axvline(cut_off.x, color="k", ls="--")
    ax[2].axhline(cut_off.proba, color="k", ls="--")

    plt.show()
Run Code Online (Sandbox Code Playgroud)

我们得到

CUT-OFF:
x           1.065712
y           1.000000
proba       0.378543
tpr         0.852713
fpr         0.143836
youden_j    0.708878
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

我们终于可以检查了

# check results
TP = df_test[(df_test.x>=cut_off.x)&(df_test.y==1)].index.size
FP = df_test[(df_test.x>=cut_off.x)&(df_test.y==0)].index.size
TN = df_test[(df_test.x< cut_off.x)&(df_test.y==0)].index.size
FN = df_test[(df_test.x< cut_off.x)&(df_test.y==1)].index.size

print("True Positive Rate: ", TP / (TP + FN))
print("False Positive Rate:", 1 - TN / (TN + FP))
Run Code Online (Sandbox Code Playgroud)
True Positive Rate:  0.8527131782945736
False Positive Rate: 0.14383561643835618
Run Code Online (Sandbox Code Playgroud)

  • 这是一个很好的方法,但是它没有考虑非唯一概率。roc_curve 返回每个唯一概率的值,但对于使用唯一 y_proba 创建的任何 df,会出现行 `df_test["tpr"] = tpr[1:][::-1]` 错误 (2认同)

Ram*_*mar 5

虽然我来晚了,但您也可以使用几何平均值来确定最佳阈值,如下所述:阈值调整用于不平衡分类

可以计算为:

# calculate the g-mean for each threshold
gmeans = sqrt(tpr * (1-fpr))
# locate the index of the largest g-mean
ix = argmax(gmeans)
print('Best Threshold=%f, G-Mean=%.3f' % (thresholds[ix], gmeans[ix]))
Run Code Online (Sandbox Code Playgroud)