MGA*_*MGA 3 performance matlab vector matrix vectorization
给定两个向量X和Y长度n,表示平面上的点和邻域半径rad,是否有一种矢量化方法来计算点的邻域矩阵?
换句话说,可以对以下(对于大的痛苦缓慢n)循环进行矢量化:
neighborhood_mat = zeros(n, n);
for i = 1 : n
for j = 1 : i - 1
dist = norm([X(j) - X(i), Y(j) - Y(i)]);
if (dist < radius)
neighborhood_mat(i, j) = 1;
neighborhood_mat(j, i) = 1;
end
end
end
Run Code Online (Sandbox Code Playgroud)
方法#1
bsxfun 基于方法 -
out = bsxfun(@minus,X,X').^2 + bsxfun(@minus,Y,Y').^2 < radius^2
out(1:n+1:end)= 0
Run Code Online (Sandbox Code Playgroud)
方法#2
Distance matrix calculation using matrix-multiplication 基于方法(可能更快) -
A = [X(:) Y(:)]
A_t = A.'; %//'
out = [-2*A A.^2 ones(n,3)]*[A_t ; ones(3,n) ; A_t.^2] < radius^2
out(1:n+1:end)= 0
Run Code Online (Sandbox Code Playgroud)
方法#3
随着pdist和squareform-
A = [X(:) Y(:)]
out = squareform(pdist(A))<radius
out(1:n+1:end)= 0
Run Code Online (Sandbox Code Playgroud)
方法#4
你可以pdist像以前的方法一样使用,但是避免squareform使用一些逻辑索引来获得邻域矩阵的最终输出,如下所示 -
A = [X(:) Y(:)]
dists = pdist(A)< radius
mask_lower = bsxfun(@gt,[1:n]',1:n) %//'
%// OR tril(true(n),-1)
mask_upper = bsxfun(@lt,[1:n]',1:n) %//'
%// OR mask_upper = triu(true(n),1)
%// OR mask_upper = ~mask_lower; mask_upper(1:n+1:end) = false;
out = zeros(n)
out(mask_lower) = dists
out_t = out' %//'
out(mask_upper) = out_t(mask_upper)
Run Code Online (Sandbox Code Playgroud)
注意:可以看出,对于上述所有方法,我们使用预分配输出.预先分配的快速方法将是out(n,n) = 0并且基于this wonderful blog on undocumented MATLAB.这应该真的加快这些方法!