Fra*_*cis 220 python matplotlib
给定时间表示中的信号图,如何绘制标记相应时间指标的线?
具体来说,给定时间索引范围为0到2.6(s)的信号图,我想绘制垂直红线,表示列表的相应时间索引[0.22058956, 0.33088437, 2.20589566],我该怎么办?
Gab*_*iel 364
添加垂直线的标准方法将覆盖整个绘图窗口而无需指定其实际高度 plt.axvline
import matplotlib.pyplot as plt
plt.axvline(x=0.22058956)
plt.axvline(x=0.33088437)
plt.axvline(x=2.20589566)
Run Code Online (Sandbox Code Playgroud)
要么
xcoords = [0.22058956, 0.33088437, 2.20589566]
for xc in xcoords:
plt.axvline(x=xc)
Run Code Online (Sandbox Code Playgroud)
您可以使用许多可用于其他情节命令的关键字(例如color,linestyle,linewidth...).您可以传递关键字参数ymin,ymax如果您喜欢轴corrdinates(例如ymin=0.25,ymax=0.75将覆盖图的中间一半).水平线(axhline)和矩形(axvspan)有相应的功能.
小智 41
对于多行
xposition = [0.3, 0.4, 0.45]
for xc in xposition:
plt.axvline(x=xc, color='k', linestyle='--')
Run Code Online (Sandbox Code Playgroud)
Tre*_*ney 32
matplotlib.pyplot.vlines 对比 matplotlib.pyplot.axvlinevlines接受 1 个或多个位置x,而axvline允许 1 个位置。
x=37x=[37, 38, 39]vlines将yminandymax作为 y 轴上的位置,而axvline将yminandymax作为 y 轴范围的百分比。
vlines,传递list给ymin和ymax。fig, ax = plt.subplots(),则分别将plt.vlines或替换plt.axvline为ax.vlines或ax.axvline。.hlinesimport numpy as np
import matplotlib.pyplot as plt
xs = np.linspace(1, 21, 200)
plt.figure(figsize=(10, 7))
# only one line may be specified; full height
plt.axvline(x=36, color='b', label='axvline - full height')
# only one line may be specified; ymin & ymax specified as a percentage of y-range
plt.axvline(x=36.25, ymin=0.05, ymax=0.95, color='b', label='axvline - % of full height')
# multiple lines all full height
plt.vlines(x=[37, 37.25, 37.5], ymin=0, ymax=len(xs), colors='purple', ls='--', lw=2, label='vline_multiple - full height')
# multiple lines with varying ymin and ymax
plt.vlines(x=[38, 38.25, 38.5], ymin=[0, 25, 75], ymax=[200, 175, 150], colors='teal', ls='--', lw=2, label='vline_multiple - partial height')
# single vline with full ymin and ymax
plt.vlines(x=39, ymin=0, ymax=len(xs), colors='green', ls=':', lw=2, label='vline_single - full height')
# single vline with specific ymin and ymax
plt.vlines(x=39.25, ymin=25, ymax=150, colors='green', ls=':', lw=2, label='vline_single - partial height')
# place legend outside
plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')
plt.show()
Run Code Online (Sandbox Code Playgroud)
x根据条形索引而不是刻度标签进行选择。
ax.get_xticklabels() 将显示位置和标签。import pandas as pd
import seaborn as sns
# load data
tips = sns.load_dataset('tips')
# histogram
ax = tips.plot(kind='hist', y='total_bill', bins=30, ec='k', title='Histogram with Vertical Line')
_ = ax.vlines(x=16.5, ymin=0, ymax=30, colors='r')
# barplot
ax = tips.loc[5:25, ['total_bill', 'tip']].plot(kind='bar', figsize=(15, 4), title='Barplot with Vertical Lines', rot=0)
_ = ax.vlines(x=[0, 17], ymin=0, ymax=45, colors='r')
Run Code Online (Sandbox Code Playgroud)
datetime dtype. 如果列或索引的类型不正确,则必须将其转换为pd.to_datetime.
x将接受类似'2020-09-24'或的日期datetime(2020, 9, 2)import pandas_datareader as web # conda or pip install this; not part of pandas
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
# get test data; this data is downloaded with the Date column in the index as a datetime dtype
df = web.DataReader('^gspc', data_source='yahoo', start='2020-09-01', end='2020-09-28').iloc[:, :2]
# display(df.head())
High Low
Date
2020-09-01 3528.030029 3494.600098
2020-09-02 3588.110107 3535.229980
# plot dataframe; the index is a datetime index
ax = df.plot(figsize=(9, 6), title='S&P 500', ylabel='Price')
# add vertical line
ax.vlines(x=[datetime(2020, 9, 2), '2020-09-24'], ymin=3200, ymax=3600, color='r', label='test lines')
ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
plt.show()
Run Code Online (Sandbox Code Playgroud)
Pet*_*ter 25
正如其他人所建议的那样,在循环中调用axvline是有效的,但是可能不方便
相反,您可以使用以下便捷函数将所有行创建为单个绘图对象:
import matplotlib.pyplot as plt
import numpy as np
def axhlines(ys, ax=None, **plot_kwargs):
"""
Draw horizontal lines across plot
:param ys: A scalar, list, or 1D array of vertical offsets
:param ax: The axis (or none to use gca)
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
ys = np.array((ys, ) if np.isscalar(ys) else ys, copy=False)
lims = ax.get_xlim()
y_points = np.repeat(ys[:, None], repeats=3, axis=1).flatten()
x_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(ys), axis=0).flatten()
plot = ax.plot(x_points, y_points, scalex = False, **plot_kwargs)
return plot
def axvlines(xs, ax=None, **plot_kwargs):
"""
Draw vertical lines on plot
:param xs: A scalar, list, or 1D array of horizontal offsets
:param ax: The axis (or none to use gca)
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
xs = np.array((xs, ) if np.isscalar(xs) else xs, copy=False)
lims = ax.get_ylim()
x_points = np.repeat(xs[:, None], repeats=3, axis=1).flatten()
y_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(xs), axis=0).flatten()
plot = ax.plot(x_points, y_points, scaley = False, **plot_kwargs)
return plot
Run Code Online (Sandbox Code Playgroud)
mak*_*kis 18
legend和/或colors某些垂直线,请使用:import matplotlib.pyplot as plt
# x coordinates for the lines
xcoords = [0.1, 0.3, 0.5]
# colors for the lines
colors = ['r','k','b']
for xc,c in zip(xcoords,colors):
plt.axvline(x=xc, label='line at x = {}'.format(xc), c=c)
plt.legend()
plt.show()
Run Code Online (Sandbox Code Playgroud)
结果:
She*_*ore 10
除了上面的答案中提供的plt.axvline和plt.plot((x1, x2), (y1, y2))OR plt.plot([x1, x2], [y1, y2])之外,还可以使用
plt.vlines(x_pos, ymin=y1, ymax=y2)
Run Code Online (Sandbox Code Playgroud)
绘制x_pos从跨越y1到y2值的垂直线,y1并y2在绝对数据坐标中.