Jus*_*gan 9 python profiling cython
所以我试图在我自己使用的python脚本中分析一个函数line_profiler,因为我想要逐行时序.唯一的问题是该函数是一个Cython函数,并且line_profiler无法正常工作.在第一次运行时,它只是崩溃了一个错误.然后我补充道
!python
cython: profile=True
cython: linetrace=True
cython: binding=True
Run Code Online (Sandbox Code Playgroud)
在我的脚本的顶部,现在运行正常,除了时间和统计是空白的!
有没有办法使用line_profilerCythonized函数?
我可以分析非Cythonized函数,但它比Cythonized函数慢得多,我无法使用来自分析的信息 - 纯python的慢速将使我无法改进Cython的一个.
这是我想要分析的函数的代码:
class motif_hit(object):
__slots__ = ['position', 'strand']
def __init__(self, int position=0, int strand=0):
self.position = position
self.strand = strand
#the decorator for line_profiler
@profile
def find_motifs_cython(list bed_list, list matrices=None, int limit=0, int mut=0):
cdef int q = 3
cdef list bg = [0.25, 0.25, 0.25, 0.25]
cdef int matrices_length = len(matrices)
cdef int results_length = 0
cdef int results_length_shuffled = 0
cdef np.ndarray upper_adjust_list = np.zeros(matrices_length, np.int)
cdef np.ndarray lower_adjust_list = np.zeros(matrices_length, np.int)
#this one need to be a list for MOODS
cdef list threshold_list = [None for _ in xrange(matrices_length)]
cdef list matrix_list = [None for _ in xrange(matrices_length)]
cdef np.ndarray results_list = np.zeros(matrices_length, np.object)
cdef int count_seq = len(bed_list)
cdef int mat
cdef int i, j, k
cdef int position, strand
cdef list result, results, results_shuffled
cdef dict result_temp
cdef int length
if count_seq > 0:
for mat in xrange(matrices_length):
matrix_list[mat] = matrices[mat]['matrix'].tolist()
#change that for a class
results_list[mat] = {'kmer': matrices[mat]['kmer'],
'motif_count': 0,
'pos_seq_count': 0,
'motif_count_shuffled': 0,
'pos_seq_count_shuffled': 0,
'ratio': 0,
'sequence_positions': np.empty(count_seq, np.object)}
length = len(matrices[mat]['kmer'])
#wrong with imbalanced matrices
upper_adjust_list[mat] = int(ceil(length / 2.0))
lower_adjust_list[mat] = int(floor(length / 2.0))
#upper_adjust_list[mat] = 0
#lower_adjust_list[mat] = 0
#-0.1 to adjust for a division floating point bug (4.99999 !< 5, but is < 4.9!)
threshold_list[mat] = MOODS.max_score(matrix_list[mat]) - float(mut) - 0.1
#for each sequence
for i in xrange(count_seq):
item = bed_list[i]
#TODO: remove the Ns, but it might unbalance
results = MOODS.search(str(item.sequence[limit:item.total_length - limit]), matrix_list, threshold_list, q=q, bg=bg, absolute_threshold=True, both_strands=True)
results_shuffled = MOODS.search(str(item.sequence_shuffled[limit:item.total_length - limit]), matrix_list, threshold_list, q=q, bg=bg, absolute_threshold=True, both_strands=True)
results = results[0:len(matrix_list)]
results_shuffled = results_shuffled[0:len(matrix_list)]
results_length = len(results)
#for each matrix
for j in xrange(results_length):
result = results[j]
result_shuffled = results_shuffled[j]
upper_adjust = upper_adjust_list[j]
lower_adjust = lower_adjust_list[j]
result_length = len(result)
result_length_shuffled = len(result_shuffled)
if result_length > 0:
results_list[j]['pos_seq_count'] += 1
results_list[j]['sequence_positions'][i] = np.empty(result_length, np.object)
#for each motif
for k in xrange(result_length):
position = result[k][0]
strand = result[k][1]
if position >= 0:
strand = 0
adjust = upper_adjust
else:
position = -position
strand = 1
adjust = lower_adjust
results_list[j]['motif_count'] += 1
results_list[j]['sequence_positions'][i][k] = motif_hit(position + adjust + limit, strand)
if result_length_shuffled > 0:
results_list[j]['pos_seq_count_shuffled'] += 1
#for each motif
for k in xrange(result_length_shuffled):
results_list[j]['motif_count_shuffled'] += 1
#j = j + 1
#i = i + 1
for i in xrange(results_length):
result_temp = results_list[i]
result_temp['ratio'] = float(result_temp['pos_seq_count']) / float(count_seq)
return results_list
Run Code Online (Sandbox Code Playgroud)
我很确定三重嵌套循环是主要的慢速部分 - 它的工作就是重新排列来自MOODS的结果,C模块正在完成主要工作.
Gis*_*wok 12
Till Hoffmann在这里有关于使用line_profiler和Cython的有用信息:如何逐行剖析cython函数.
我引用他的解决方案:
罗伯特布拉德肖帮助我让Robert Kern的line_profiler工具为cdef函数工作,我想我会分享结果stackoverflow.
总之,建立经常性的.pyx文件,构建脚本,并传递给cythonize了linetrace编译器指令,以使两者分析和线条跟踪:
from Cython.Build import cythonize
cythonize('hello.pyx', compiler_directives={'linetrace': True})
Run Code Online (Sandbox Code Playgroud)
您可能还想将(未记录的)指令设置binding为True.
此外,您应该CYTHON_TRACE=1通过修改您的extensions设置来定义C宏
extensions = [
Extension('test', ['test.pyx'], define_macros=[('CYTHON_TRACE', '1')])
]
Run Code Online (Sandbox Code Playgroud)
%%cython在iPython笔记本中使用魔术的一个工作示例如下:http:
//nbviewer.ipython.org/gist/tillahoffmann/296501acea231cbdf5e7
Grz*_*ota 10
Api改变了.现在:
from Cython.Compiler.Options import get_directive_defaults
directive_defaults = get_directive_defaults()
directive_defaults['linetrace'] = True
directive_defaults['binding'] = True
Run Code Online (Sandbox Code Playgroud)