该算法众所周知,您进行 8 次左移,并在每次移位后检查个位、数十位或数百位(每个 4 位)。如果它们超过 4 个,则将 3 个添加到该组中,依此类推...
这是一个基于流程的解决方案,但不起作用。它会编译,但输出不是我想要的。有什么想法可能是什么问题吗?
library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_unsigned.all ;
entity hex2bcd is
port ( hex_in : in std_logic_vector (7 downto 0) ;
bcd_hun : out std_logic_vector (3 downto 0) ;
bcd_ten : out std_logic_vector (3 downto 0) ;
bcd_uni : out std_logic_vector (3 downto 0) ) ;
end hex2bcd ;
architecture arc_hex2bcd of hex2bcd is
begin
process ( hex_in )
variable hex_src : std_logic_vector (7 downto 0) ;
variable bcd : std_logic_vector (11 downto 0) ;
begin
hex_src := hex_in ;
bcd := (others => '0') ;
for i in 0 to 7 loop
bcd := bcd(11 downto 1) & hex_src(7) ; -- shift bcd + 1 new entry
hex_src := hex_src(7 downto 1) & '0' ; -- shift src + pad with 0
if bcd(3 downto 0) > "0100" then
bcd(3 downto 0) := bcd(3 downto 0) + "0011" ;
end if ;
if bcd(7 downto 4) > "0100" then
bcd(7 downto 4) := bcd(7 downto 4) + "0011" ;
end if ;
if bcd(11 downto 8) > "0100" then
bcd(11 downto 8) := bcd(11 downto 8) + "0011" ;
end if ;
end loop ;
bcd_hun <= bcd(11 downto 8) ;
bcd_ten <= bcd(7 downto 4) ;
bcd_uni <= bcd(3 downto 0) ;
end process ;
end arc_hex2bcd ;
Run Code Online (Sandbox Code Playgroud)
小智 5
评论变得太长了。
考虑以下框图:
这表示一个展开的循环 ( for i in 0 to 7 loop
),并表明对于 LS BCD 数字,在 i = 2 之前不发生添加 +3,对于中间 BCD 数字,在 i = 5 之前不发生添加 +3,并且在 MS BCD 数字上不发生调整,它部分由静态“0”值组成。
这给了我们总共 7 个 add3 模块(由封闭的 if 语句和条件 add +3 表示)。
这在 VHDL 中得到了演示:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity bin8bcd is
port (
bin: in std_logic_vector (7 downto 0);
bcd: out std_logic_vector (11 downto 0)
);
end entity;
architecture struct of bin8bcd is
procedure add3 (signal bin: in std_logic_vector (3 downto 0);
signal bcd: out std_logic_vector (3 downto 0)) is
variable is_gt_4: std_logic;
begin
is_gt_4 := bin(3) or (bin(2) and (bin(1) or bin(0)));
if is_gt_4 = '1' then
-- if to_integer(unsigned (bin)) > 4 then
bcd <= std_logic_vector(unsigned(bin) + "0011");
else
bcd <= bin;
end if;
end procedure;
signal U0bin,U1bin,U2bin,U3bin,U4bin,U5bin,U6bin:
std_logic_vector (3 downto 0);
signal U0bcd,U1bcd,U2bcd,U3bcd,U4bcd,U5bcd,U6bcd:
std_logic_vector (3 downto 0);
begin
U0bin <= '0' & bin (7 downto 5);
U1bin <= U0bcd(2 downto 0) & bin(4);
U2bin <= U1bcd(2 downto 0) & bin(3);
U3bin <= U2bcd(2 downto 0) & bin(2);
U4bin <= U3bcd(2 downto 0) & bin(1);
U5bin <= '0' & U0bcd(3) & U1bcd(3) & U2bcd(3);
U6bin <= U5bcd(2 downto 0) & U3bcd(3);
U0: add3(U0bin,U0bcd);
U1: add3(U1bin,U1bcd);
U2: add3(U2bin,U2bcd);
U3: add3(U3bin,U3bcd);
U4: add3(U4bin,U4bcd);
U5: add3(U5bin,U5bcd);
U6: add3(U6bin,U6bcd);
OUTP:
bcd <= '0' & '0' & U5bcd(3) & U6bcd & U4bcd & bin(0);
end architecture;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity bin8bcd_tb is
end entity;
architecture foo of bin8bcd_tb is
signal bin: std_logic_vector (7 downto 0) := (others => '0');
-- (initialized to prevent those annoying metavalue reports)
signal bcd: std_logic_vector (11 downto 0);
begin
DUT:
entity work.bin8bcd
port map (
bin => bin,
bcd => bcd
);
STIMULUS:
process
begin
for i in 0 to 255 loop
bin <= std_logic_vector(to_unsigned(i,8));
wait for 1 ns;
end loop;
wait for 1 ns;
wait;
end process;
end architecture;
Run Code Online (Sandbox Code Playgroud)
当运行附带的测试台时,会产生:
如果您滚动浏览整个波形,您会发现从 001 到 255 的所有 bcd 输出都存在并被考虑(没有孔),任何地方都没有“X”或“U”。
从显示 i = 7 的框图中我们可以看出,在最后一次移位之后没有发生 add +3。
另请注意,bcd 的 LSB 始终是 bin 的 LSB,并且 bcd(11) 和 bcd(10) 始终为“0”。
add3 可以手动优化,使用逻辑运算符创建 3 的增量,以消除报告从 bin 派生的元值的任何可能性(并且会有很多元值)。
据我所知,这代表了 8 位二进制到 12 位 BCD 转换的最优化表示。
之前我编写了一个 C 程序来为 espresso(术语最小化器)提供输入:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity bin8bcd is
port (
bin: in std_logic_vector (7 downto 0);
bcd: out std_logic_vector (11 downto 0)
);
end entity;
architecture struct of bin8bcd is
procedure add3 (signal bin: in std_logic_vector (3 downto 0);
signal bcd: out std_logic_vector (3 downto 0)) is
variable is_gt_4: std_logic;
begin
is_gt_4 := bin(3) or (bin(2) and (bin(1) or bin(0)));
if is_gt_4 = '1' then
-- if to_integer(unsigned (bin)) > 4 then
bcd <= std_logic_vector(unsigned(bin) + "0011");
else
bcd <= bin;
end if;
end procedure;
signal U0bin,U1bin,U2bin,U3bin,U4bin,U5bin,U6bin:
std_logic_vector (3 downto 0);
signal U0bcd,U1bcd,U2bcd,U3bcd,U4bcd,U5bcd,U6bcd:
std_logic_vector (3 downto 0);
begin
U0bin <= '0' & bin (7 downto 5);
U1bin <= U0bcd(2 downto 0) & bin(4);
U2bin <= U1bcd(2 downto 0) & bin(3);
U3bin <= U2bcd(2 downto 0) & bin(2);
U4bin <= U3bcd(2 downto 0) & bin(1);
U5bin <= '0' & U0bcd(3) & U1bcd(3) & U2bcd(3);
U6bin <= U5bcd(2 downto 0) & U3bcd(3);
U0: add3(U0bin,U0bcd);
U1: add3(U1bin,U1bcd);
U2: add3(U2bin,U2bcd);
U3: add3(U3bin,U3bcd);
U4: add3(U4bin,U4bcd);
U5: add3(U5bin,U5bcd);
U6: add3(U6bin,U6bcd);
OUTP:
bcd <= '0' & '0' & U5bcd(3) & U6bcd & U4bcd & bin(0);
end architecture;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity bin8bcd_tb is
end entity;
architecture foo of bin8bcd_tb is
signal bin: std_logic_vector (7 downto 0) := (others => '0');
-- (initialized to prevent those annoying metavalue reports)
signal bcd: std_logic_vector (11 downto 0);
begin
DUT:
entity work.bin8bcd
port map (
bin => bin,
bcd => bcd
);
STIMULUS:
process
begin
for i in 0 to 255 loop
bin <= std_logic_vector(to_unsigned(i,8));
wait for 1 ns;
end loop;
wait for 1 ns;
wait;
end process;
end architecture;
Run Code Online (Sandbox Code Playgroud)
然后开始研究中间术语,这将直接引导您了解上面框图中所表示的内容。
当然,您可以使用实际的组件 add3 以及使用嵌套的生成语句来连接所有内容。
如果不限制 if 语句(对于 LS BCD 数字,2 < i < 7,对于中间 BCD 数字,5 < i < 7),您将无法从循环语句表示中获得相同的最小化硬件。
您希望辅助嵌套生成语句为缩短的结构表示提供相同的约束。
add3 的逻辑运算符版本显示在大学讲座幻灯片的 PDF 第 5页上,用于使用双重涉足进行二进制到 BCD 转换,其中前勾用于表示否定符号,“+”表示 OR,邻接表示 AND。
add3 看起来像:
procedure add3 (signal bin: in std_logic_vector (3 downto 0);
signal bcd: out std_logic_vector (3 downto 0)) is
begin
bcd(3) <= bin(3) or
(bin(2) and bin(0)) or
(bin(2) and bin(1));
bcd(2) <= (bin(3) and bin(0)) or
(bin(2) and not bin(1) and not bin(0));
bcd(1) <= (bin(3) and not bin(0)) or
(not bin(2) and bin(1)) or
(bin(1) and bin(0));
bcd(0) <= (bin(3) and not bin(0)) or
(not bin(3) and not bin(2) and bin(0)) or
(bin(2) and bin(1) and not bin(0));
end procedure;
Run Code Online (Sandbox Code Playgroud)
请注意,这将允许从上下文子句中删除程序包 numeric_std (或等效程序)。
如果您以相同的顺序(在本例中从左到右)在 AND 项中写入信号,则重复的 AND 项会很好地显示,就像使用浓缩咖啡一样。在 FPGA 实现中使用中间 AND 术语没有任何价值,这些术语都按原样适合 LUT。
add3 的浓缩咖啡输入:
.i 4
.o 4
0000 0000
0001 0001
0010 0010
0011 0011
0100 0100
0101 1000
0110 1001
0111 1010
1000 1011
1001 1100
1010 ----
1011 ----
1100 ----
1101 ----
1110 ----
1111 ----
.e
浓缩咖啡的输出(espresso -eonset):
.i 4
.o 4
.p 8
-100 0100
00-1 0001
--11 0010
-01- 0010
-110 1001
-1-1 1000
1--1 1100
1--0 1011
.e
当您考虑二进制到 BCD 转换的组合“深度”时,对于 FPGA 来说,它是 6 个 LUT(第 6 个是后续内容的输入)。如果转换发生在一个时钟内,这可能会将时钟速度限制在 100 MHz 以下。
通过流水线或使用顺序逻辑(时钟循环),您可以在 6 个时钟周期内以最快的速度运行 FPGA。