我正在寻找一种测量openCV FPS的正确方法.我找到了几种方法.但它们都不适合我.
我测试过的第一个使用time_t start和time_t end.一旦它返回一个转储函数作为fps x时间图(我真的无法想象fps图如何成为转储函数),我认为一个是错误的.
这是这个情节的形象.

我测试的第二个使用t =(double)cvGetTickCount()来测量fps.一旦它返回120 fps,这种方式是错误的,但是,对于30秒长度,以120 fps捕获的视频不应该花费超过1分钟来处理.所以这是衡量FPS的错误方法.
有人知道在openCV中测量FPS的另一种方法吗?
PS.我正试图在视频的每一帧中找到圆圈.视频帧尺寸为320x240像素.
更新2 我正在尝试测量FPS的代码.
for(;;){
clock_t start=CLOCK();
Mat frame, finalFrame;
capture >> frame;
finalFrame = frame;
cvtColor(frame, frame, CV_BGR2GRAY);
GaussianBlur(frame, frame, Size(7,7), 1.5, 1.5);
threshold(frame, frame, 20, 255, CV_THRESH_BINARY);
dilate(frame, frame, Mat(), Point(-1, -1), 2, 1, 1);
erode(frame, frame, Mat(), Point(-1, -1), 2, 1, 1);
Canny(frame, frame, 20, 20*2, 3 );
vector<Vec3f> circles;
findContours(frame,_contours,_storage,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );
vector<vector<Point> > contours_poly( _contours.size() );
vector<Rect> boundRect( _contours.size() );
vector<Point2f>center( _contours.size() );
vector<float>radius( _contours.size() );
int temp = 0;
for( int i = 0; i < _contours.size(); i++ )
{
if( _contours[i].size() > 100 )
{
approxPolyDP( Mat(_contours[i]), contours_poly[i], 3, true );
boundRect[i] = boundingRect( Mat(_contours[i]) );
minEnclosingCircle( (Mat)_contours[i], center[i], radius[i] );
temp = i;
break;
}
}
double dur = CLOCK()-start;
printf("avg time per frame %f ms. fps %f. frameno = %d\n",avgdur(dur),avgfps(),frameno++ );
frameCounter++;
if(frameCounter == 3600)
break;
if(waitKey(1000/120) >= 0) break;
}
Run Code Online (Sandbox Code Playgroud)
更新
使用Zaw Lin方法执行程序!

我已经发布了一种方法来实现这个目标@ 获取当前的OpenCV FPS.有必要做一些平均,否则fps会太疯狂.
我在进程中放入了一个Sleep(),它给出了正确的fps和持续时间(+/- 1ms).
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <opencv/cv.h>
#include <sys/timeb.h>
using namespace cv;
#if defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) \
|| defined(WIN64) || defined(_WIN64) || defined(__WIN64__)
#include <windows.h>
bool _qpcInited=false;
double PCFreq = 0.0;
__int64 CounterStart = 0;
void InitCounter()
{
LARGE_INTEGER li;
if(!QueryPerformanceFrequency(&li))
{
std::cout << "QueryPerformanceFrequency failed!\n";
}
PCFreq = double(li.QuadPart)/1000.0f;
_qpcInited=true;
}
double CLOCK()
{
if(!_qpcInited) InitCounter();
LARGE_INTEGER li;
QueryPerformanceCounter(&li);
return double(li.QuadPart)/PCFreq;
}
#endif
#if defined(unix) || defined(__unix) || defined(__unix__) \
|| defined(linux) || defined(__linux) || defined(__linux__) \
|| defined(sun) || defined(__sun) \
|| defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) \
|| defined(__FreeBSD__) || defined __DragonFly__ \
|| defined(sgi) || defined(__sgi) \
|| defined(__MACOSX__) || defined(__APPLE__) \
|| defined(__CYGWIN__)
double CLOCK()
{
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return (t.tv_sec * 1000)+(t.tv_nsec*1e-6);
}
#endif
double _avgdur=0;
double _fpsstart=0;
double _avgfps=0;
double _fps1sec=0;
double avgdur(double newdur)
{
_avgdur=0.98*_avgdur+0.02*newdur;
return _avgdur;
}
double avgfps()
{
if(CLOCK()-_fpsstart>1000)
{
_fpsstart=CLOCK();
_avgfps=0.7*_avgfps+0.3*_fps1sec;
_fps1sec=0;
}
_fps1sec++;
return _avgfps;
}
void process(Mat& frame)
{
Sleep(3);
}
int main(int argc, char** argv)
{
int frameno=0;
cv::Mat frame;
cv::VideoCapture cap(0);
for(;;)
{
//cap>>frame;
double start=CLOCK();
process(frame);
double dur = CLOCK()-start;
printf("avg time per frame %f ms. fps %f. frameno = %d\n",avgdur(dur),avgfps(),frameno++ );
if(waitKey(1)==27)
exit(0);
}
return 0;
}
Run Code Online (Sandbox Code Playgroud)