这是我的问题的后续问题:在视频序列中本地增强车牌
我实现了答案建议的基本超分辨率技术,但我无法获得更好的分辨率结果.我将视频序列修剪为40帧,如下所示:
并使用下面的代码,它采用前5帧并执行超分辨率,然后通过处理序列中的其余帧重复更新超分辨率帧:
public void Process(Image<Gray, byte> frame)
{
SetRegionOfInterest(frame);
var resizedFrame = ResizeFrame(frame);
InputFrames.Add(resizedFrame);
if(InputFrames.Count > 5)
{
InputFrames.RemoveAt(0);
PerformSuperResolution();
}
}
public void PerformSuperResolution()
{
// WindowSize = 5
var referenceFrame = InputFrames[WindowSize-1].Convert<Gray, byte>();
var featuresToTrack = referenceFrame.GoodFeaturesToTrack(100, 0.1, 5, 10);
referenceFrame.FindCornerSubPix(featuresToTrack, new Size(WindowSize,WindowSize), new Size(-1,-1), new MCvTermCriteria(20, 0.03d));
var resultFrame = InputFrames[WindowSize-1].Convert<Gray, double>();
for(var frameCounter = 0; frameCounter < WindowSize-1; frameCounter++)
{
// Get shift between frames
var shiftResult = GetShiftResult(InputFrames[frameCounter],referenceFrame, featuresToTrack);
// Warp to correct shift
var warpMatrix = new Matrix<double>(new[,] { {1, 0, -shiftResult.ShiftX}, {0, 1, -shiftResult.ShiftY}, {0, 0, 1}});
var warpedFrame = InputFrames[frameCounter].WarpPerspective(warpMatrix,
INTER.CV_INTER_NN,
WARP.CV_WARP_DEFAULT,
new Gray(0));
resultFrame.RunningAvg(warpedFrame.Convert<Gray,double>(), 1, resultFrame.Convert<Gray, byte>());
}
SuperResolutionFrame = resultFrame.Convert<Gray, byte>();
}
public ShiftResult GetShiftResult(Image<Gray, byte> inputFrame, Image<Gray, byte> referenceFrame, PointF[][] ActualFeature)
{
var result = new ShiftResult();
PointF[] NextFeature;
Byte[] Status;
float[] TrackError;
// optical flow
OpticalFlow.PyrLK(referenceFrame, inputFrame, ActualFeature[0],
new Size(WindowSize, WindowSize), 5, new MCvTermCriteria(20, 0.1d),
out NextFeature, out Status, out TrackError);
//get displacements
float[] XdisplacementVectors = new float[NextFeature.Length];
float[] YdisplacementVectors = new float[NextFeature.Length];
for(int i = 0; i < NextFeature.Length; i++)
{
XdisplacementVectors[i] = NextFeature[i].X - ActualFeature[0][i].X;
YdisplacementVectors[i] = NextFeature[i].Y - ActualFeature[0][i].Y;
}
// gets average of displacements (disregards outliers)
result.ShiftX = getAVG(XdisplacementVectors);
result.ShiftY = getAVG(YdisplacementVectors);
return result;
}
Run Code Online (Sandbox Code Playgroud)
程序调用Process(frame)一组输入视频帧(总共40个),如下所示:
for(int i = 0; i < image_array.Count; i++)
{
Res.Process(image_array[i]);
}
Run Code Online (Sandbox Code Playgroud)
我得到了这个结果图像:

正如您所看到的,整体分辨率只有很小的改进,并且对牌照的可读性没有太大改进.我尝试过尝试各种参数,但上面使用的参数似乎是我能做的最好的.
我愿意接受任何改进建议(不必限于上面使用C#/ Emgu CV),甚至可以在移动应用领域内实现不同的实现方法.