MOO*_*OON 42 python numpy scipy
如何从numpy和scipy中分别导入阶乘函数,以便查看哪一个更快?
我已经通过导入数学从python本身导入了factorial.但是,它不适用于numpy和scipy.
Ash*_*ary 54
您可以像这样导入它们:
In [7]: import scipy, numpy, math
In [8]: scipy.math.factorial, numpy.math.factorial, math.factorial
Out[8]:
(<function math.factorial>,
<function math.factorial>,
<function math.factorial>)
Run Code Online (Sandbox Code Playgroud)
scipy.math.factorial而numpy.math.factorial似乎仅仅是为/别名/引用math.factorial,那就是scipy.math.factorial is math.factorial和numpy.math.factorial is math.factorial都应该给True.
Yux*_*ang 41
对于阿什维尼答案是伟大的,在指出scipy.math.factorial,numpy.math.factorial,math.factorial有相同的功能.但是,我建议使用Janne提到的那个,这scipy.misc.factorial是不同的.scipy中的那个可以np.ndarray作为输入,而其他人则不能.
In [12]: import scipy.misc
In [13]: temp = np.arange(10) # temp is an np.ndarray
In [14]: math.factorial(temp) # This won't work
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-14-039ec0734458> in <module>()
----> 1 math.factorial(temp)
TypeError: only length-1 arrays can be converted to Python scalars
In [15]: scipy.misc.factorial(temp) # This works!
Out[15]:
array([ 1.00000000e+00, 1.00000000e+00, 2.00000000e+00,
6.00000000e+00, 2.40000000e+01, 1.20000000e+02,
7.20000000e+02, 5.04000000e+03, 4.03200000e+04,
3.62880000e+05])
Run Code Online (Sandbox Code Playgroud)
所以,如果你对np.ndarray进行阶乘,那么来自scipy的那个将更容易编码并且比执行for循环更快.
Jan*_*ila 21
SciPy有这个功能scipy.special.factorial(以前scipy.misc.factorial)
>>> import math
>>> import scipy.special
>>> math.factorial(6)
720
>>> scipy.special.factorial(6)
array(720.0)
Run Code Online (Sandbox Code Playgroud)
from numpy import prod
def factorial(n):
print prod(range(1,n+1))
Run Code Online (Sandbox Code Playgroud)
或来自运营商的mul:
from operator import mul
def factorial(n):
print reduce(mul,range(1,n+1))
Run Code Online (Sandbox Code Playgroud)
或完全没有帮助:
def factorial(n):
print reduce((lambda x,y: x*y),range(1,n+1))
Run Code Online (Sandbox Code Playgroud)