Siu*_*ji- 6 algorithm erlang biginteger bigint square-root
对于Erlang或的解决方案C / C++,请转到下面的试验4.
isqrt(N) when erlang:is_integer(N), N >= 0 ->
erlang:trunc(math:sqrt(N)).
Run Code Online (Sandbox Code Playgroud)
此实现使用sqrt()C库中的函数,因此它不适用于任意大整数(请注意,返回的结果与输入不匹配.正确的答案应该是12345678901234567890):
Erlang R16B03 (erts-5.10.4) [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false]
Eshell V5.10.4 (abort with ^G)
1> erlang:trunc(math:sqrt(12345678901234567890 * 12345678901234567890)).
12345678901234567168
2>
Run Code Online (Sandbox Code Playgroud)
+仅使用Bigint ]isqrt2(N) when erlang:is_integer(N), N >= 0 ->
isqrt2(N, 0, 3, 0).
isqrt2(N, I, _, Result) when I >= N ->
Result;
isqrt2(N, I, Times, Result) ->
isqrt2(N, I + Times, Times + 2, Result + 1).
Run Code Online (Sandbox Code Playgroud)
此实现基于以下观察:
isqrt(0) = 0 # <--- One 0
isqrt(1) = 1 # <-+
isqrt(2) = 1 # |- Three 1's
isqrt(3) = 1 # <-+
isqrt(4) = 2 # <-+
isqrt(5) = 2 # |
isqrt(6) = 2 # |- Five 2's
isqrt(7) = 2 # |
isqrt(8) = 2 # <-+
isqrt(9) = 3 # <-+
isqrt(10) = 3 # |
isqrt(11) = 3 # |
isqrt(12) = 3 # |- Seven 3's
isqrt(13) = 3 # |
isqrt(14) = 3 # |
isqrt(15) = 3 # <-+
isqrt(16) = 4 # <--- Nine 4's
...
Run Code Online (Sandbox Code Playgroud)
这个实现只涉及bigint添加,所以我希望它能够快速运行.然而,当我用它喂它时1111111111111111111111111111111111111111 * 1111111111111111111111111111111111111111,它似乎永远在我(非常快)的机器上运行.
+1,-1并且div 2只]isqrt3(N) when erlang:is_integer(N), N >= 0 ->
isqrt3(N, 1, N).
isqrt3(_N, Low, High) when High =:= Low + 1 ->
Low;
isqrt3(N, Low, High) ->
Mid = (Low + High) div 2,
MidSqr = Mid * Mid,
if
%% This also catches N = 0 or 1
MidSqr =:= N ->
Mid;
MidSqr < N ->
isqrt3(N, Mid, High);
MidSqr > N ->
isqrt3(N, Low, Mid)
end.
Run Code Online (Sandbox Code Playgroud)
isqrt3a(N) when erlang:is_integer(N), N >= 0 ->
isqrt3a(N, 1, N).
isqrt3a(N, Low, High) when Low >= High ->
HighSqr = High * High,
if
HighSqr > N ->
High - 1;
HighSqr =< N ->
High
end;
isqrt3a(N, Low, High) ->
Mid = (Low + High) div 2,
MidSqr = Mid * Mid,
if
%% This also catches N = 0 or 1
MidSqr =:= N ->
Mid;
MidSqr < N ->
isqrt3a(N, Mid + 1, High);
MidSqr > N ->
isqrt3a(N, Low, Mid - 1)
end.
Run Code Online (Sandbox Code Playgroud)
现在它解决了79位数字(即1111111111111111111111111111111111111111 * 1111111111111111111111111111111111111111)的闪电速度,结果立即显示.但是,在我的机器上需要60秒(+ - 2秒)来解决一百万(1,000,000)个61位数字(即从,1000000000000000000000000000000000000000000000000000000000000到1000000000000000000000000000000000000000000000000000001000000).我想更快地做到这一点.
+和Newton的方法div]isqrt4(0) -> 0;
isqrt4(N) when erlang:is_integer(N), N >= 0 ->
isqrt4(N, N).
isqrt4(N, Xk) ->
Xk1 = (Xk + N div Xk) div 2,
if
Xk1 >= Xk ->
Xk;
Xk1 < Xk ->
isqrt4(N, Xk1)
end.
Run Code Online (Sandbox Code Playgroud)
#include <stdint.h>
uint32_t isqrt_impl(
uint64_t const n,
uint64_t const xk)
{
uint64_t const xk1 = (xk + n / xk) / 2;
return (xk1 >= xk) ? xk : isqrt_impl(n, xk1);
}
uint32_t isqrt(uint64_t const n)
{
if (n == 0) return 0;
if (n == 18446744073709551615ULL) return 4294967295U;
return isqrt_impl(n, n);
}
Run Code Online (Sandbox Code Playgroud)
#include <stdint.h>
uint32_t isqrt_iterative(uint64_t const n)
{
uint64_t xk = n;
if (n == 0) return 0;
if (n == 18446744073709551615ULL) return 4294967295U;
do
{
uint64_t const xk1 = (xk + n / xk) / 2;
if (xk1 >= xk)
{
return xk;
}
else
{
xk = xk1;
}
} while (1);
}
Run Code Online (Sandbox Code Playgroud)
Erlang代码在我的机器上在40秒(+ - 1秒)内解决了一百万(1,000,000)个61位数字,所以这比试验3快.它可以更快吗?
处理器: 3.4 GHz Intel Core i7
内存: 32 GB 1600 MHz DDR3
操作系统: Mac OS X版本10.9.1
user448810的答案使用"Newton's Method".我不确定使用"整数除法"进行除法是否合适.我稍后会尝试将其作为更新.[更新(2015-01-11):可以这样做]
数学的答案涉及使用第三方Python包gmpy,这对我来说不是很有利,因为我主要感兴趣的是只用内置设施在Erlang中解决它.
像下面这样的二分搜索不需要浮点除法,只需要整数乘法(比牛顿方法慢):-
low = 1;
/* More efficient bound
high = pow(10,log10(target)/2+1);
*/
high = target
while(low<high) {
mid = (low+high)/2;
currsq = mid*mid;
if(currsq==target) {
return(mid);
}
if(currsq<target) {
if((mid+1)*(mid+1)>target) {
return(mid);
}
low = mid+1;
}
else {
high = mid-1;
}
}
Run Code Online (Sandbox Code Playgroud)
这适用于O(logN)迭代,因此即使对于非常大的数字也不应该永远运行
Log10(目标)如果需要计算:-
acc = target
log10 = 0;
while(acc>0) {
log10 = log10 + 1;
acc = acc/10;
}
Run Code Online (Sandbox Code Playgroud)
笔记 : acc/10是整数除法
编辑 :-
有效界限:- sqrt(n) 的位数大约是 n 的一半,因此您可以通过high = 10^(log10(N)/2+1)&&low = 10^(log10(N)/2-1)来获得更严格的界限,并且它应该提供 2 倍的速度。
评估界限:-
bound = 1;
acc = N;
count = 0;
while(acc>0) {
acc = acc/10;
if(count%2==0) {
bound = bound*10;
}
count++;
}
high = bound*10;
low = bound/10;
isqrt(N,low,high);
Run Code Online (Sandbox Code Playgroud)