我正在尝试创建一个函数,或者甚至只是计算如何使用data.table语法运行循环,我可以通过因子对表进行子集化,在本例中为id变量,然后在每个子集上运行线性模型并输出结果.以下示例数据.
df <- data.frame(id = letters[1:3],
cyl = sample(c("a","b","c"), 30, replace = TRUE),
factor = sample(c(TRUE, FALSE), 30, replace = TRUE),
hp = sample(c(20:50), 30, replace = TRUE))
dt=as.data.table(df)
fit <- lm(hp ~ cyl + factor, data = df) #how do I get the [i] to work here to subset and iterate by each factor and also do it in data.table syntax?
Run Code Online (Sandbox Code Playgroud)
预期的结果是适合[1]模型,拟合[2]模型等.
我知道你想用数据表做这个,如果你想要一些特定的拟合方面,比如系数,那么@ MartinBel的方法是一个很好的方法.
另一方面,如果您想自己存储拟合,lapply(...)
可能是更好的选择:
set.seed(1)
df <- data.frame(id = letters[1:3],
cyl = sample(c("a","b","c"), 30, replace = TRUE),
factor = sample(c(TRUE, FALSE), 30, replace = TRUE),
hp = sample(c(20:50), 30, replace = TRUE))
dt <- data.table(df,key="id")
fits <- lapply(unique(df$id),
function(z)lm(hp~cyl+factor, data=dt[J(z),], y=T))
# coefficients
sapply(fits,coef)
# [,1] [,2] [,3]
# (Intercept) 44.117647 35.000000 3.933333e+01
# cylb -6.117647 -6.321429 -1.266667e+01
# cylc -13.176471 3.821429 -7.833333e+00
# factorTRUE 1.176471 5.535714 2.325797e-15
# predicted values
sapply(fits,predict)
# [,1] [,2] [,3]
# 1 45.29412 28.67857 26.66667
# 2 32.11765 35.00000 31.50000
# 3 30.94118 34.21429 26.66667
# ...
# residuals
sapply(fits,residuals)
# [,1] [,2] [,3]
# 1 2.7058824 0.3214286 7.333333
# 2 -2.1176471 5.0000000 -4.500000
# 3 3.0588235 8.7857143 -4.666667
# ...
# se and r-sq
sapply(fits, function(x)c(se=summary(x)$sigma, rsq=summary(x)$r.squared))
# [,1] [,2] [,3]
# se 7.923655 8.6358196 6.4592741
# rsq 0.463076 0.3069017 0.4957024
# Q-Q plots
par(mfrow=c(1,length(fits)))
lapply(fits,plot,2)
Run Code Online (Sandbox Code Playgroud)
注意key="id"
在调用中data.table(...)
的使用,以及dt[J(z)]
如何对数据表进行子集化.除非dt
是巨大的,否则这确实没有必要.
归档时间: |
|
查看次数: |
2906 次 |
最近记录: |