Paw*_*ian 10 python pivot-table dataframe pandas
我正在尝试将包含字符串的表作为结果.
import pandas as pd
df1 = pd.DataFrame({'index' : range(8),
'variable1' : ["A","A","B","B","A","B","B","A"],
'variable2' : ["a","b","a","b","a","b","a","b"],
'variable3' : ["x","x","x","y","y","y","x","y"],
'result': ["on","off","off","on","on","off","off","on"]})
df1.pivot_table(values='result',rows='index',cols=['variable1','variable2','variable3'])
Run Code Online (Sandbox Code Playgroud)
但我明白了:DataError: No numeric types to aggregate
.
当我将结果值更改为数字时,这可以正常工作:
df2 = pd.DataFrame({'index' : range(8),
'variable1' : ["A","A","B","B","A","B","B","A"],
'variable2' : ["a","b","a","b","a","b","a","b"],
'variable3' : ["x","x","x","y","y","y","x","y"],
'result': [1,0,0,1,1,0,0,1]})
df2.pivot_table(values='result',rows='index',cols=['variable1','variable2','variable3'])
Run Code Online (Sandbox Code Playgroud)
我得到了我需要的东西:
variable1 A B
variable2 a b a b
variable3 x y x y x y
index
0 1 NaN NaN NaN NaN NaN
1 NaN NaN 0 NaN NaN NaN
2 NaN NaN NaN NaN 0 NaN
3 NaN NaN NaN NaN NaN 1
4 NaN 1 NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN 0
6 NaN NaN NaN NaN 0 NaN
7 NaN NaN NaN 1 NaN NaN
Run Code Online (Sandbox Code Playgroud)
我知道我可以将字符串映射到数值然后反转操作,但也许有更优雅的解决方案?
Ran*_*win 24
我最初的回复是基于Pandas 0.14.1,从那以后,很多事情在pivot_table函数中发生了变化(rows - > index,cols - > columns ......)
此外,我发布的原始lambda技巧似乎不再适用于Pandas 0.18.您必须提供减少功能(即使它是最小值,最大值或平均值).但即使这样看起来也不合适 - 因为我们并没有减少数据集,只是改变了它......所以我看起来更加困难......
import pandas as pd
df1 = pd.DataFrame({'index' : range(8),
'variable1' : ["A","A","B","B","A","B","B","A"],
'variable2' : ["a","b","a","b","a","b","a","b"],
'variable3' : ["x","x","x","y","y","y","x","y"],
'result': ["on","off","off","on","on","off","off","on"]})
# these are the columns to end up in the multi-index columns.
unstack_cols = ['variable1', 'variable2', 'variable3']
Run Code Online (Sandbox Code Playgroud)
首先,使用索引+要堆叠的列设置数据的索引,然后使用级别arg调用unstack.
df1.set_index(['index'] + unstack_cols).unstack(level=unstack_cols)
Run Code Online (Sandbox Code Playgroud)
结果数据框如下.
归档时间: |
|
查看次数: |
9216 次 |
最近记录: |