all*_*nds 7 python filtering signal-processing scipy
我想在Python中应用自适应滤波器,但无法在线找到有关如何实现此类算法的任何文档或示例.我熟悉使用scipy.signal工具箱设计"静态"过滤器,但我不知道如何设计自适应过滤器.
澄清一下:我有一个S包含噪音的录音信号.在这个录音中有一个"真正的"功能,我想访问,称之为T.我也有估计T.我想设计一个滤波器使得滤波之间的误差S和T最小化.请注意,在这种情况下,静态过滤器没有用,因为我试图过滤非平稳信号.
den*_*nis 10
这是使用Numpy的Python中的基本LMS自适应过滤器.
欢迎提出意见,最受欢迎的测试用例.

""" lms.py: a simple python class for Least mean squares adaptive filter """
from __future__ import division
import numpy as np
__version__ = "2013-08-29 aug denis"
#...............................................................................
class LMS:
    """ lms = LMS( Wt, damp=.5 )  Least mean squares adaptive filter
    in:
        Wt: initial weights, e.g. np.zeros( 33 )
        damp: a damping factor for swings in Wt
    # for t in range(1000):
    yest = lms.est( X, y [verbose=] )
    in: X: a vector of the same length as Wt
        y: signal + noise, a scalar
        optional verbose > 0: prints a line like "LMS: yest y c"
    out: yest = Wt.dot( X )
        lms.Wt updated
    How it works:
    on each call of est( X, y ) / each timestep,
    increment Wt with a multiple of this X:
        Wt += c X
    What c would give error 0 for *this* X, y ?
        y = (Wt + c X) . X
        =>
        c = (y  -  Wt . X)
            --------------
               X . X
    Swings in Wt are damped a bit with a damping factor a.k.a. mu in 0 .. 1:
        Wt += damp * c * X
    Notes:
        X s are often cut from a long sequence of scalars, but can be anything:
        samples at different time scales, seconds minutes hours,
        or for images, cones in 2d or 3d x time.
"""
# See also:
#     http://en.wikipedia.org/wiki/Least_mean_squares_filter
#     Mahmood et al. Tuning-free step-size adaptation, 2012, 4p
# todo: y vec, X (Wtlen,ylen)
#...............................................................................
    def __init__( self, Wt, damp=.5 ):
        self.Wt = np.squeeze( getattr( Wt, "A", Wt ))  # matrix -> array
        self.damp = damp
    def est( self, X, y, verbose=0 ):
        X = np.squeeze( getattr( X, "A", X ))
        yest = self.Wt.dot(X)
        c = (y - yest) / X.dot(X)
            # clip to cmax ?
        self.Wt += self.damp * c * X
        if verbose:
            print "LMS: yest %-6.3g   y %-6.3g   err %-5.2g   c %.2g" % (
                yest, y, yest - y, c )
        return yest
#...............................................................................
if __name__ == "__main__":
    import sys
    filterlen = 10
    damp = .1
    nx = 500
    f1 = 40  # chirp
    noise = .05 * 2  # * swing
    plot = 0
    seed = 0
    exec( "\n".join( sys.argv[1:] ))  # run this.py n= ...  from sh or ipython
    np.set_printoptions( 2, threshold=100, edgeitems=10, linewidth=80, suppress=True )
    np.random.seed(seed)
    def chirp( n, f0=2, f1=40, t1=1 ):  # <-- your test function here
        # from $scipy/signal/waveforms.py
        t = np.arange( n + 0. ) / n * t1
        return np.sin( 2*np.pi * f0 * (f1/f0)**t )
    Xlong = chirp( nx, f1=f1 )
    # Xlong = np.cos( 2*np.pi * freq * np.arange(nx) )
    if noise:
        Xlong += np.random.normal( scale=noise, size=nx )  # laplace ...
    Xlong *= 10
    print 80 * "-"
    title = "LMS  chirp  filterlen %d  nx %d  noise %.2g  damp %.2g " % (
        filterlen, nx, noise, damp )
    print title
    ys = []
    yests = []
#...............................................................................
    lms = LMS( np.zeros(filterlen), damp=damp )
    for t in xrange( nx - filterlen ):
        X = Xlong[t:t+filterlen]
        y = Xlong[t+filterlen]  # predict
        yest = lms.est( X, y, verbose = (t % 10 == 0) )
        ys += [y]
        yests += [yest]
    y = np.array(ys)
    yest = np.array(yests)
    err = yest - y
    averr = "av %.2g += %.2g" % (err.mean(), err.std())
    print "LMS yest - y:", averr
    print "LMS weights:", lms.Wt
    if plot:
        import pylab as pl
        fig, ax = pl.subplots( nrows=2 )
        fig.set_size_inches( 12, 8 )
        fig.suptitle( title, fontsize=12 )
        ax[0].plot( y, color="orangered", label="y" )
        ax[0].plot( yest, label="yest" )
        ax[0].legend()
        ax[1].plot( err, label=averr )
        ax[1].legend()
        if plot >= 2:
            pl.savefig( "tmp.png" )
        pl.show()
Run Code Online (Sandbox Code Playgroud)
        您应该查看Padasip库https://pypi.python.org/pypi/padasip
在该库中实现了多个自适应滤波器.您可以直接使用它,或调查如何创建过滤器(源代码在github上https://github.com/matousc89/padasip)
如果您只想测试任何实现的自适应滤波器适用于您的情况,请参阅本教程Padasip自适应滤波器基础知识 - 噪声消除,系统识别和信号预测
|   归档时间:  |  
           
  |  
        
|   查看次数:  |  
           11143 次  |  
        
|   最近记录:  |