eej*_*i42 6 c# 3d graphics geometry
Can anyone recommend an efficient port to CSharp of any of the public AABB/triangle intersection algorithms.
I've been looking at Moller's approach, described abstractly here, and if I were to port it, I would probably start from this C++ version. This C++ library by Mike Vandelay seems like it could also be a great starting point.
...or... any other "wheel" that can take a triangle of Vector3's and tell me if it intersects with an AABB), relatively efficiently.
There seem to be a variety of algorithms, but most seem to be written in c++, or just described abstractly in white papers and I need a c# specific implementation for our application. Efficiency is not key, but c# is. (though efficiency is obviously nice too of course ;p )
任何C#选项,在我通过"数学"端口之前;)将不胜感激!谢谢.
Mar*_*rot 22
对于任何两个凸网格,要查找它们是否相交,您需要检查是否存在分离平面.如果是这样,它们就不会相交.可以从任何形状的任何面或边缘交叉产品中挑选平面.
该平面定义为法线和偏离Origo.因此,您只需要检查AABB的三个面和三角形的一个面.
bool IsIntersecting(IAABox box, ITriangle triangle)
{
double triangleMin, triangleMax;
double boxMin, boxMax;
// Test the box normals (x-, y- and z-axes)
var boxNormals = new IVector[] {
new Vector(1,0,0),
new Vector(0,1,0),
new Vector(0,0,1)
};
for (int i = 0; i < 3; i++)
{
IVector n = boxNormals[i];
Project(triangle.Vertices, boxNormals[i], out triangleMin, out triangleMax);
if (triangleMax < box.Start.Coords[i] || triangleMin > box.End.Coords[i])
return false; // No intersection possible.
}
// Test the triangle normal
double triangleOffset = triangle.Normal.Dot(triangle.A);
Project(box.Vertices, triangle.Normal, out boxMin, out boxMax);
if (boxMax < triangleOffset || boxMin > triangleOffset)
return false; // No intersection possible.
// Test the nine edge cross-products
IVector[] triangleEdges = new IVector[] {
triangle.A.Minus(triangle.B),
triangle.B.Minus(triangle.C),
triangle.C.Minus(triangle.A)
};
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{
// The box normals are the same as it's edge tangents
IVector axis = triangleEdges[i].Cross(boxNormals[j]);
Project(box.Vertices, axis, out boxMin, out boxMax);
Project(triangle.Vertices, axis, out triangleMin, out triangleMax);
if (boxMax <= triangleMin || boxMin >= triangleMax)
return false; // No intersection possible
}
// No separating axis found.
return true;
}
void Project(IEnumerable<IVector> points, IVector axis,
out double min, out double max)
{
double min = double.PositiveInfinity;
double max = double.NegativeInfinity;
foreach (var p in points)
{
double val = axis.Dot(p);
if (val < min) min = val;
if (val > max) max = val;
}
}
interface IVector
{
double X { get; }
double Y { get; }
double Z { get; }
double[] Coords { get; }
double Dot(IVector other);
IVector Minus(IVector other);
IVector Cross(IVector other);
}
interface IShape
{
IEnumerable<IVector> Vertices { get; }
}
interface IAABox : IShape
{
IVector Start { get; }
IVector End { get; }
}
interface ITriangle : IShape {
IVector Normal { get; }
IVector A { get; }
IVector B { get; }
IVector C { get; }
}
Run Code Online (Sandbox Code Playgroud)
一个很好的例子是盒子(±10,±10,±10)和三角形(12,9,9),(9,12,9),(19,19,20).没有任何面可以用作分离平面,但它们不相交.分离轴<1,1.0>,其从<1,0,0>和<-3,3,0>之间的叉积获得.

我注意到这个实现中的一个小错误会导致漏报.如果您的三角形有一条平行于一个轴的边(例如(1,0,0)),那么在计算时您将得到一个空向量
triangleEdges[i].Cross(boxNormals[j])
Run Code Online (Sandbox Code Playgroud)
这将导致下面的测试中的平等,并给你一个假阴性.
在行处用<和>替换<=和> =
if (boxMax <= triangleMin || boxMin >= triangleMax)
Run Code Online (Sandbox Code Playgroud)
(严格比较删除这些情况).
除此之外,效果很好!
谢谢