我使用logit模型进行了分析,现在想要使用probit模型做同样的事情.任何人都可以把这个winbugs logit模型变成winbugs probit模型吗?
model
{
for (i in 1:n) {
# Linear regression on logit
logit(p[i]) <- alpha + b.sex*sex[i] + b.age*age[i]
# Likelihood function for each data point
frac[i] ~ dbern(p[i])
}
alpha ~ dnorm(0.0,1.0E-4) # Prior for intercept
b.sex ~ dnorm(0.0,1.0E-4) # Prior for slope of sex
b.age ~ dnorm(0.0,1.0E-4) # Prior for slope of age
}
Data
list(sex=c(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0,
0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1),
age= c(69, 57, 61, 60, 69, 74, 63, 68, 64, 53, 60, 58, 79, 56, 53, 74, 56, 76, 72,
56, 66, 52, 77, 70, 69, 76, 72, 53, 69, 59, 73, 77, 55, 77, 68, 62, 56, 68, 70, 60,
65, 55, 64, 75, 60, 67, 61, 69, 75, 68, 72, 71, 54, 52, 54, 50, 75, 59, 65, 60, 60,
57, 51, 51, 63, 57, 80, 52, 65, 72, 80, 73, 76, 79, 66, 51, 76, 75, 66, 75, 78, 70,
67, 51, 70, 71, 71, 74, 74, 60, 58, 55, 61, 65, 52, 68, 75, 52, 53, 70),
frac=c(1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,
1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 0, 1, 0, 0, 1),
n=100)
Initial Values
list(alpha=0, b.sex=1, b.age=1)
Run Code Online (Sandbox Code Playgroud)
WinBUGS接受多种类型的链接功能(请参阅WinBUGS 手册中的第15页).对于概率模型,将线性回归方程式更改为:
probit(p[i]) <- alpha + b.sex*sex[i] + b.age*age[i]
Run Code Online (Sandbox Code Playgroud)
我建议你将年龄变量居中,否则你可能遇到一些收敛问题,所以类似于:
probit(p[i]) <- alpha + b.sex*sex[i] + b.age*(age[i] - mean(age[]))
Run Code Online (Sandbox Code Playgroud)
或者,对于probit模型(如果probit函数给你一些陷阱错误),你可以使用phi标准的普通cdf函数:
p[i] <- phi(alpha + b.sex*sex[i] + b.age*(age[i] - mean(age[])))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3818 次 |
| 最近记录: |