Opt*_*esh 74 python data-visualization matplotlib python-2.7 pandas
我被困在一些感觉应该相对容易的事情上.我下面的代码是基于我正在研究的更大项目的示例.我没有理由发布所有细节,所以请接受我带来的数据结构.
基本上,我正在创建一个条形图,我只是想弄清楚如何在条形图上添加值标签(在条形图的中心,或者在它上面).一直在寻找网络上的样本,但没有成功实现我自己的代码.我相信解决方案要么是'text',要么是'annotate',但是我:a)不知道使用哪一个(一般来说,还没弄清楚何时使用哪个).b)无法看到要么呈现价值标签.非常感谢您的帮助,我的代码如下.提前致谢!
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pd.set_option('display.mpl_style', 'default')
%matplotlib inline
# Bring some raw data.
frequencies = [6, 16, 75, 160, 244, 260, 145, 73, 16, 4, 1]
# In my original code I create a series and run on that,
# so for consistency I create a series from the list.
freq_series = pd.Series.from_array(frequencies)
x_labels = [108300.0, 110540.0, 112780.0, 115020.0, 117260.0, 119500.0,
121740.0, 123980.0, 126220.0, 128460.0, 130700.0]
# Plot the figure.
plt.figure(figsize=(12, 8))
fig = freq_series.plot(kind='bar')
fig.set_title('Amount Frequency')
fig.set_xlabel('Amount ($)')
fig.set_ylabel('Frequency')
fig.set_xticklabels(x_labels)
Run Code Online (Sandbox Code Playgroud)
Sim*_*ons 101
首先freq_series.plot返回一个轴而不是一个数字,以便让我的答案更加清晰我已经改变了你的给定代码来引用它,ax而不是fig与其他代码示例更加一致.
您可以从ax.patches成员中获取绘图中生成的条形列表.然后,您可以使用此matplotlib库示例中演示的技术使用该ax.text方法添加标签.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Bring some raw data.
frequencies = [6, 16, 75, 160, 244, 260, 145, 73, 16, 4, 1]
# In my original code I create a series and run on that,
# so for consistency I create a series from the list.
freq_series = pd.Series.from_array(frequencies)
x_labels = [108300.0, 110540.0, 112780.0, 115020.0, 117260.0, 119500.0,
121740.0, 123980.0, 126220.0, 128460.0, 130700.0]
# Plot the figure.
plt.figure(figsize=(12, 8))
ax = freq_series.plot(kind='bar')
ax.set_title('Amount Frequency')
ax.set_xlabel('Amount ($)')
ax.set_ylabel('Frequency')
ax.set_xticklabels(x_labels)
rects = ax.patches
# Make some labels.
labels = ["label%d" % i for i in xrange(len(rects))]
for rect, label in zip(rects, labels):
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2, height + 5, label,
ha='center', va='bottom')
Run Code Online (Sandbox Code Playgroud)
这会产生一个标记的图,看起来像:

jus*_*rec 38
根据另一个问题的答案中提到的功能,我找到了一种非常普遍适用的解决方案,用于在条形图上放置标签.
遗憾的是,其他解决方案在许多情况下都不起作用,因为标签和条之间的间距或者以条的绝对单位给出,或者通过条的高度来缩放.前者仅适用于较窄范围的值,后者在一个图中给出不一致的间距.两者都不适用于对数轴.
我建议的解决方案独立于规模(即小数字和大数字)工作,甚至正确地为负值和对数标度放置标签,因为它使用视觉单位points进行偏移.
我添加了一个负数,以展示在这种情况下标签的正确位置.
每个条的高度值用作它的标签.其他标签可以很容易地与Simon的for rect, label in zip(rects, labels)片段一起使用.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Bring some raw data.
frequencies = [6, -16, 75, 160, 244, 260, 145, 73, 16, 4, 1]
# In my original code I create a series and run on that,
# so for consistency I create a series from the list.
freq_series = pd.Series.from_array(frequencies)
x_labels = [108300.0, 110540.0, 112780.0, 115020.0, 117260.0, 119500.0,
121740.0, 123980.0, 126220.0, 128460.0, 130700.0]
# Plot the figure.
plt.figure(figsize=(12, 8))
ax = freq_series.plot(kind='bar')
ax.set_title('Amount Frequency')
ax.set_xlabel('Amount ($)')
ax.set_ylabel('Frequency')
ax.set_xticklabels(x_labels)
def add_value_labels(ax, spacing=5):
"""Add labels to the end of each bar in a bar chart.
Arguments:
ax (matplotlib.axes.Axes): The matplotlib object containing the axes
of the plot to annotate.
spacing (int): The distance between the labels and the bars.
"""
# For each bar: Place a label
for rect in ax.patches:
# Get X and Y placement of label from rect.
y_value = rect.get_height()
x_value = rect.get_x() + rect.get_width() / 2
# Number of points between bar and label. Change to your liking.
space = spacing
# Vertical alignment for positive values
va = 'bottom'
# If value of bar is negative: Place label below bar
if y_value < 0:
# Invert space to place label below
space *= -1
# Vertically align label at top
va = 'top'
# Use Y value as label and format number with one decimal place
label = "{:.1f}".format(y_value)
# Create annotation
ax.annotate(
label, # Use `label` as label
(x_value, y_value), # Place label at end of the bar
xytext=(0, space), # Vertically shift label by `space`
textcoords="offset points", # Interpret `xytext` as offset in points
ha='center', # Horizontally center label
va=va) # Vertically align label differently for
# positive and negative values.
# Call the function above. All the magic happens there.
add_value_labels(ax)
plt.savefig("image.png")
Run Code Online (Sandbox Code Playgroud)
编辑:我已经在一个函数中提取了相关的功能,正如barnhillec所建议的那样.
这会产生以下输出:
并且使用对数刻度(并对输入数据进行一些调整以显示对数缩放),结果如下:
Aja*_*jay 38
如果只想标记条形上方的数据点,可以使用 plt.annotate()
我的代码:
import numpy as np
import matplotlib.pyplot as plt
n = [1,2,3,4,5,]
s = [i**2 for i in n]
line = plt.bar(n,s)
plt.xlabel('Number')
plt.ylabel("Square")
for i in range(len(s)):
plt.annotate(str(s[i]), xy=(n[i],s[i]), ha='center', va='bottom')
plt.show()
Run Code Online (Sandbox Code Playgroud)
通过指定的水平和垂直对齐'center'和'bottom'相应的一个可以得到居中注释。
小智 22
基于上述(很棒!)答案,我们还可以通过一些调整来制作水平条形图:
# Bring some raw data.
frequencies = [6, -16, 75, 160, 244, 260, 145, 73, 16, 4, 1]
freq_series = pd.Series(frequencies)
y_labels = [108300.0, 110540.0, 112780.0, 115020.0, 117260.0, 119500.0,
121740.0, 123980.0, 126220.0, 128460.0, 130700.0]
# Plot the figure.
plt.figure(figsize=(12, 8))
ax = freq_series.plot(kind='barh')
ax.set_title('Amount Frequency')
ax.set_xlabel('Frequency')
ax.set_ylabel('Amount ($)')
ax.set_yticklabels(y_labels)
ax.set_xlim(-40, 300) # expand xlim to make labels easier to read
rects = ax.patches
# For each bar: Place a label
for rect in rects:
# Get X and Y placement of label from rect.
x_value = rect.get_width()
y_value = rect.get_y() + rect.get_height() / 2
# Number of points between bar and label. Change to your liking.
space = 5
# Vertical alignment for positive values
ha = 'left'
# If value of bar is negative: Place label left of bar
if x_value < 0:
# Invert space to place label to the left
space *= -1
# Horizontally align label at right
ha = 'right'
# Use X value as label and format number with one decimal place
label = "{:.1f}".format(x_value)
# Create annotation
plt.annotate(
label, # Use `label` as label
(x_value, y_value), # Place label at end of the bar
xytext=(space, 0), # Horizontally shift label by `space`
textcoords="offset points", # Interpret `xytext` as offset in points
va='center', # Vertically center label
ha=ha) # Horizontally align label differently for
# positive and negative values.
plt.savefig("image.png")
Run Code Online (Sandbox Code Playgroud)

Tre*_*ney 12
matplotlib v3.4.2matplotlib.pyplot.bar_label
label_type为'edge'。要将标签居中在条形中间,请使用'center'pandas v1.2.4,它matplotlib用作绘图引擎。ax.containers是list的BarContainer artists
[0]被使用。listfmt参数完成简单的标签格式化,如演示示例和如何使用聚合值注释 seaborn barplot 中所示。label参数,如 Demo 示例和以下所示
import pandas as pd
# dataframe using frequencies and x_labels from the OP
df = pd.DataFrame({'Frequency': frequencies}, index=x_labels)
# display(df)
Frequency
108300.0 6
110540.0 16
112780.0 75
115020.0 160
117260.0 244
# plot
ax = df.plot(kind='bar', figsize=(12, 8), title='Amount Frequency',
xlabel='Amount ($)', ylabel='Frequency', legend=False)
# annotate
ax.bar_label(ax.containers[0], label_type='edge')
# pad the spacing between the number and the edge of the figure
ax.margins(y=0.1)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
133567 次 |
| 最近记录: |