小编Vin*_*ent的帖子

如何用条形图绘制最小/最大条形

我想调整我的绘图代码以显示最小/最大条形,如下图所示:

我的代码是:

from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("white")
sns.set_style('darkgrid',{"axes.facecolor": ".92"}) # (1)
sns.set_context('notebook')

Delay = ['S1', 'S2', 'S3', 'S4']

Time = [87, 66, 90, 55]

df = pd.DataFrame({'Delay':Delay,'Time':Time})
print("Accuracy")

display(df) # in jupyter

fig, ax = plt.subplots(figsize = (8,6))

x = Delay
y = Time

plt.xlabel("Delay", size=14)
plt.ylim(-0.3, 100)
width = 0.1

for i, j in zip(x,y): 
    ax.bar(i,j, edgecolor = "black",
        error_kw=dict(lw=1, capsize=1, capthick=1)) …
Run Code Online (Sandbox Code Playgroud)

python matplotlib pandas seaborn

4
推荐指数
1
解决办法
2万
查看次数

如何使用聚合值注释seaborn barplot

如何修改以下代码以显示条形图的每个条上的平均值以及不同的误差条?

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("white")

a,b,c,d = [],[],[],[]

for i in range(1,5):
   np.random.seed(i)
   a.append(np.random.uniform(35,55))
   b.append(np.random.uniform(40,70))
   c.append(np.random.uniform(63,85))
   d.append(np.random.uniform(59,80))

data_df =pd.DataFrame({'stages':[1,2,3,4],'S1':a,'S2':b,'S3':c,'S4':d})
print("Delay:")

display(data_df)

          S1         S2         S3         S4
0  43.340440  61.609735  63.002516  65.348984
1  43.719898  40.777787  75.092575  68.141770
2  46.015958  61.244435  69.399904  69.727380
3  54.340597  56.416967  84.399056  74.011136

meansd_df=data_df.describe().loc[['mean', 'std'],:].drop('stages', axis = 1)
display(meansd_df)

sns.set()
sns.set_style('darkgrid',{"axes.facecolor": ".92"}) # (1)
sns.set_context('notebook')
fig, ax = plt.subplots(figsize = (8,6))

x = meansd_df.columns
y …
Run Code Online (Sandbox Code Playgroud)

python matplotlib bar-chart pandas seaborn

2
推荐指数
1
解决办法
1824
查看次数

标签 统计

matplotlib ×2

pandas ×2

python ×2

seaborn ×2

bar-chart ×1