我收到错误,如登录时在laravel 5中找不到类'App\Http\Controllers\admin\Auth'.我是laravel的新手,所以请帮助我或给我一些教程链接,以便与管理员一起进行完整的laravel应用程序开发
routes.php文件
Route::group(array('prefix'=>'admin'),function(){
Route::get('login', 'admin\AdminHomeController@showLogin');
Route::post('check','admin\AdminHomeController@checkLogin');
});
Run Code Online (Sandbox Code Playgroud)
AdminHomeController.php
<?php namespace App\Http\Controllers\admin;
use App\Http\Requests;
use App\Http\Controllers\Controller;
use Illuminate\Http\Request;
class AdminHomeController extends Controller {
//
public function showLogin()
{
return view('admin.login');
}
public function checkLogin(Request $request)
{
$data=array(
'username'=>$request->get('username'),
'password'=>$request->get('password')
);
if(Auth::attempt($data))
{
return redirect::intended('admin/dashboard');
}
else
{
return redirect('admin/login');
}
}
public function logout()
{
Auth::logout();
return redirect('admin/login');
}
public function showDashboard()
{
return view('admin.dashboard');
}
}
Run Code Online (Sandbox Code Playgroud)
login.blade.php
<html>
<body>
{!! Form::open(array('url' => 'admin/check', 'id' => …
Run Code Online (Sandbox Code Playgroud) 我现有的ap.net c#网站正在使用mysql数据库.现在我打算为该网站创建移动应用程序,因为该API需要做好准备.我正在PHP Laravel Framework中创建一个API.对于RegistrationAPI需要生成密码.
Asp.net使用其内置库生成密码之类的
WebSecurity.CreateUserAndAccount("username", "password");
Run Code Online (Sandbox Code Playgroud)
它会在名为"webpages_membership"的表中自动生成密码
注意:我使用的是aps.net工作网站使用的相同数据库.所以我的网站将在asp.net,api现在将在php中.
我在php中找到了MembershipModel类,用于比较两个密码,但它无法生成密码.
<?php
/*
* Author : Mr. Juned Ansari
* Date : 15/02/2017
* Purpose : It Handles Login Encryption And Decryption Related Activities
*/
class MembershipModel {
function bytearraysequal($source, $target) {
if ($source == null || $target == null || (strlen($source) != strlen($target)))
return false;
for ($ctr = 0; $ctr < strlen($target); $ctr++) {
if ($target[$ctr] != $source[$ctr])
return false;
}
return true;
}
//This Function is Used to …
Run Code Online (Sandbox Code Playgroud) 我对 ELK 堆栈非常陌生,只是在探索 kibana,已经创建了仪表板,现在当我与其他人共享该仪表板时,它也会在 kibana 中显示所有其他选项卡,而应该仅显示仪表板。我如何在 kibana 中设置这些东西?
我已经在我的电脑上安装了 kibana 7.1.0,我可以使用下面的链接直接访问而无需登录。 http://10.42.35.14:5601
我知道我们可以使用“仅仪表板模式”选项共享 kibana 7.1.0 仪表板,但我不知道如何设置?基本许可下的安全功能。
我已经在服务器上安装了 kibana 并通过单击共享选项
Shared URL共享仪表板:10.42.35.10 : 5601/goto/83d6947d72ae21a4d6ecccf27096b255
注意:上面的 ip 是私有的,我在本地网络中共享了 kibana 仪表板,但是当我打开到其他计算机的共享链接时,我可以看到所有菜单。它应该是仅共享仪表板。
我正在获取Logstash的Java版本和mysql-connect-java.jar兼容性问题。
谁能告诉我哪个版本的mysql-connect-java.jar与哪个版本的Java兼容?
错误:
com.mysql.cj.jdbc.Driver not loaded. Are you sure you've included the correct jdbc driver in :jdbc_driver_library?
Run Code Online (Sandbox Code Playgroud)
我当前的Java版本是
openjdk version "1.8.0_212"
OpenJDK Runtime Environment (build 1.8.0_212-8u212-b03-0ubuntu1.16.04.1-b03)
OpenJDK 64-Bit Server VM (build 25.212-b03, mixed mode)
Run Code Online (Sandbox Code Playgroud)
我曾尝试使用以下mysql连接器jar文件,但每个失败。
mysql-connector-java-8.0.16.jar
mysql-connector-java-8.0.15.jar
mysql-connector-java-6.0.5.jar
mysql-connector-java-5.1.46.jar
mysql-connector-java-5.1.4.jar
Run Code Online (Sandbox Code Playgroud)
Logstash配置文件是mysql.conf
input {
jdbc {
jdbc_connection_string => "jdbc:mysql://localhost:3306/prbi"
jdbc_user => "root"
jdbc_password => ""
jdbc_driver_library => "mysql-connector-java-8.0.15.jar" #tried above every jar
jdbc_driver_class => "com.mysql.cj.jdbc.Driver" #tried com.mysql.jdbc.Driver too
schedule => "* * * * *"
use_column_value => true
tracking_column => "%{id}" …
Run Code Online (Sandbox Code Playgroud) 想要计算销售前 2 天和销售后 2 天
Total_2_days_prior_sales = 当前日期之前 2 天的销售额总计 Total_2_days_prior_sales = 从当前日期到接下来 2 天的销售额总计
要求:
实时代码: http: //sqlfiddle.com/#!9/ d88bee/15
我的尝试:
CREATE TABLE test (
end_date date,
sales int
);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-01',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-01',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-02',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-02',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-03',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-04',10);
INSERT INTO test (end_Date, sales)
VALUES ('2022-01-05',10);
INSERT …
Run Code Online (Sandbox Code Playgroud) 我有大约 30 GB 的 JSON 数据和多个文件,想要在此基础上构建查询机器人。我已经用文本文件构建了相同的内容,但我不确定它如何适用于 JSON 数据。
我已经探索过 JSONLoader,但不知道如何使用它将 JSON 数据转换为向量并将其存储到 ChromaDB 中,以便我可以查询它们。 https://python.langchain.com/docs/modules/data_connection/document_loaders/json
示例 JSON 文件:http://jsonblob.com/1147948130921996288
文本数据代码:
# Loading and Splitting the Documents
from langchain.document_loaders import DirectoryLoader
directory = '/content/drive/MyDrive/Data Science/LLM/docs/text files'
def load_docs(directory):
loader = DirectoryLoader(directory)
documents = loader.load()
return documents
documents = load_docs(directory)
len(documents)
from langchain.text_splitter import RecursiveCharacterTextSplitter
def split_docs(documents,chunk_size=1000,chunk_overlap=20):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
docs = text_splitter.split_documents(documents)
return docs
docs = split_docs(documents)
print(len(docs))
# Embedding Text Using Langchain
from langchain.embeddings import SentenceTransformerEmbeddings
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") …
Run Code Online (Sandbox Code Playgroud) 我对 Laravel 非常陌生,我看到在每个 Laravel 教程中都有 Laravel 宅基地,这让新学习者感到困惑。事实上,直到现在我都不明白它是什么以及我们为什么要使用它?
我的问题很简单——新人可以不用宅基地开始吗?此外,我只是想以非常简单的方式了解 Laravel Homestead 的重要性。
我想在 url 中传递数组,所以我使用 http_build_query 进行了编码
$filterArray = array('OrderNo'=>$_REQUEST['txtorderno'],
'StoreName'=>$_REQUEST['txtstorename'],
'PartyCode'=>$_REQUEST['txtpartycode'],
'fromdate'=>$_REQUEST['txtfromdate'],
'todate'=>$_REQUEST['txttodate'],
'minamount'=>$_REQUEST['txtminamount'],
'maxamount'=>$_REQUEST['txtmaxamount']);
$data = array('DistributorId' => $_GET['DistributorId'], 'StoreId' => $_GET['StoreId'],'filterArray' => http_build_query($filterArray));
Run Code Online (Sandbox Code Playgroud)
最后我的网址是这样生成的
http://localhost/test/orderdetails.php?DistributorId=&StoreId=&filterArray=OrderNo%3D1%26StoreName%3D2%26PartyCode%3D3%26fromdate%3D04%252F26%252F2017%26todate%3D04%252F27%252F2017%26minamount%3D111%26maxamount%3D222
Run Code Online (Sandbox Code Playgroud)
现在我如何从 url 获取所有参数?
我试图打印 filterArray 参数,如
echo "<pre>";
$arr = (urldecode($_GET['filterArray']));
var_dump($arr);
Run Code Online (Sandbox Code Playgroud)
它打印
string(99) "OrderNo=1&StoreName=2&PartyCode=3&fromdate=04/26/2017&todate=04/27/2017&minamount=111&maxamount=222"
Run Code Online (Sandbox Code Playgroud) 我使用句子转换器进行语义搜索,但有时它不理解上下文含义并返回错误的结果,例如。意大利语上下文/语义搜索的 BERT 问题
默认情况下,句子嵌入的向量边是 78 列,那么如何增加该维度,以便它能够深入理解上下文含义。
代码:
# Load the BERT Model
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('bert-base-nli-mean-tokens')
# Setup a Corpus
# A corpus is a list with documents split by sentences.
sentences = ['Absence of sanity',
'Lack of saneness',
'A man is eating food.',
'A man is eating a piece of bread.',
'The girl is carrying a baby.',
'A man is riding a horse.',
'A woman is playing violin.',
'Two men pushed carts through the woods.', …
Run Code Online (Sandbox Code Playgroud) nlp artificial-intelligence machine-learning bert-language-model
Predict_proba 返回神经网络中的误差
https://faroit.com/keras-docs/1.0.0/models/sequential/#the-sequential-model-api
我使用的 Tensorflow 版本:2.6.0
代码:
#creating the object (Initializing the ANN)
import tensorflow as tf
from tensorflow import keras
LAYERS = [
tf.keras.layers.Dense(50, activation="relu", input_shape=X_train.shape[1:]),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Dense(25, activation="relu"),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(5, activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1, activation='sigmoid')
]
LOSS = "binary_crossentropy"
OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=1e-3)
model_cEXT = tf.keras.models.Sequential(LAYERS)
model_cEXT.compile(loss=LOSS , optimizer=OPTIMIZER, metrics=['accuracy'])
EPOCHS = 100
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("model_cEXT.h5", save_best_only=True)
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard_cb = tf.keras.callbacks.TensorBoard(log_dir="logs")
CALLBACKS = [checkpoint_cb, early_stopping_cb, tensorboard_cb]
model_cEXT.fit(X_train, y_train['cEXT'], epochs = EPOCHS, validation_data=(X_test, y_test['cEXT']), callbacks …
Run Code Online (Sandbox Code Playgroud)