我使用这个数据库建模
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
预处理后
X_train = df.drop('class', axis=1).to_numpy()
y_train = df['class'].to_numpy()
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.2)
Run Code Online (Sandbox Code Playgroud)
班级
class network(nn.Module):
def __init__(self, input_size, hidden1_size, hidden2_size, num_classes):
super(network, self).__init__()
self.fc1 = nn.Linear(input_size, hidden1_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(hidden2_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
return out
net = network(input_size=6, hidden1_size=5, hidden2_size=4, num_classes=4)
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss() …
Run Code Online (Sandbox Code Playgroud)