小编lju*_*ten的帖子

Matplotlib注释/文本:如何分别设置facecolor和edgecolor的alpha透明度?

我正在使用 matplotlibplt.text函数向直方图添加文本框。在bbox参数中我指定了boxstylefacecoloredgecoloralpha。然而,当我运行它并显示绘图时,盒子的表面及其边缘相对于 都变得透明alpha。这会稍微改变两种颜色,我想保持我的边缘稳定。有谁知道如何设置 alpha 以使边框保持不透明 ( alpha=1) 但面部颜色可以设置为任何值 ( alpha = [0,1])。

谢谢。

import matplotlib.pyplot as plt
import statistics

fig, ax = plt.subplots()
ax.hist(x=data, bins='auto', color='#0504aa', alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)

textstr = '\n'.join((
    r'$n=%.2f$' % (len(data), ),
    r'$\mu=%.2f$' % (round(statistics.mean(data), 4), ),
    r'$\mathrm{median}=%.2f$' % (round(statistics.median(data), 4), ),
    r'$\sigma=%.2f$' % (round(statistics.pstdev(data), 4), )))

ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14,
        verticalalignment='top', bbox=dict(boxstyle='square,pad=.6',facecolor='lightgrey', edgecolor='black', alpha=0.7))

plt.show()
Run Code Online (Sandbox Code Playgroud)

python plot text alpha matplotlib

4
推荐指数
1
解决办法
4198
查看次数

未从混洗数据集中选择 Keras ImageDataGenerator 验证拆分

How can I randomly split my image dataset into training and validation datesets? More specifically, the validation_split argument in Keras ImageDataGenerator function is not randomly splitting my images into training and validation but is slicing the validation sample from an unshuffled dataset.

python validation training-data keras tensorflow

2
推荐指数
1
解决办法
1188
查看次数

标签 统计

python ×2

alpha ×1

keras ×1

matplotlib ×1

plot ×1

tensorflow ×1

text ×1

training-data ×1

validation ×1