因此,我根据人类的存在为我的图像提供了“0”和“1”的标签。当我传递所有图像并尝试训练我的模型时。我收到内存错误。
import warnings
warnings.filterwarnings('ignore')
import tensorflow as to
import tensorflow.keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ReduceLROnPlateau, CSVLogger, EarlyStopping
from tensorflow.keras.models import Model
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense
from tensorflow.keras.applications.resnet50 import ResNet50
from PIL import Image
import os
import numpy as np
train_x=[]
train_y=[]
for path in os.listdir('C:\\Users\\maini_\\Desktop\\TestAndTrain\\in\\train'):
img = Image.open('C:\\Users\\maini_\\Desktop\\TestAndTrain\\in\\train\\'+path)
train_x.append(np.array(img))
train_y.append(1)
img.close()
for path in os.listdir('C:\\Users\\maini_\\Desktop\\TestAndTrain\\notin\\train'):
img = Image.open('C:\\Users\\maini_\\Desktop\\TestAndTrain\\notin\\train\\'+path)
train_x.append(np.array(img))
train_y.append(0)
img.close()
print("done" )
train_x = np.array(train_x)
train_x = train_x.astype(np.float32)
train_x /= 255.0
train_y = np.array(train_y)
Run Code Online (Sandbox Code Playgroud)
我正在与 …
python machine-learning training-data tensorflow jupyter-notebook