我正在尝试建立一个conditional CNN模型。模型是,
在first stage我的模型中,我将我的数据提供给Model 1然后,based on the prediction of Model 1我想train the model to Conditional Cat model or Conditional Dog model最后给出来自 Conditional Cat 模型或 Conditional Dog 模型的输出。我怎样才能做到这一点?
注意: 我的努力是,
import keras
from keras.layers import *
from keras.models import *
from keras.utils import *
img_rows,img_cols,number_of_class = 256,256,2
input = Input(shape=(img_rows,img_cols,3))
#----------- main model (Model 1) ------------------------------------
conv_01 = Convolution2D(64, 3, 3, activation='relu',name = 'conv_01') (input)
conv_02 = Convolution2D(64, 3, 3, …Run Code Online (Sandbox Code Playgroud) 大家好,我一直在尝试将输出图表保存为plt.savefig("coeff.png")svg或 png,但我得到的只是一张空白图片。
无论如何,我可以将我的绘图导出为图片格式吗?
下面是我的代码。
# These are the (standardized) coefficients found
# when it refit using that best alpha
list(zip(X.columns, LGBMR.feature_importances_))
#Now let's make it more presentable in Pandas DataFrame and also in standard form for numbers
df_LGBM_model_coefficients = pd.DataFrame(list(zip(X_train.columns, LGBMR.feature_importances_)))
df_LGBM_model_coefficients.rename(columns={0:'Features', 1: 'Coefficients'}, inplace=True)
df_LGBM_model_coefficients = df_LGBM_model_coefficients.iloc[1:]
df_LGBM_model_coefficients = df_LGBM_model_coefficients.sort_values(by = 'Coefficients', ascending = False)
#only retain the important ones.
df_LGBM_model_coefficients_top_10 = df_LGBM_model_coefficients.head(10)
plt.figure(figsize=(12,12))
sns.set_style('whitegrid')
sns.set(font_scale=0.8)
ax = sns.barplot(x = 'Coefficients',y='Features', data = df_LGBM_model_coefficients_top_10)
ax.set_title("LGBMR …Run Code Online (Sandbox Code Playgroud)