我正在对每个变量进行神经网络编码,当我要拟合模型时,会出现错误。
indices[201] = [0,8] is out of order. Many sparse ops require sorted indices.
Use `tf.sparse.reorder` to create a correctly ordered copy.
[Op:SerializeManySparse]
Run Code Online (Sandbox Code Playgroud)
我不知道如何解决它。我可以在这里打印一些代码,如果你想要更多,我仍然可以打印它
def process_atributes(df, train, test):
continuas = ['Trip_Duration']
cs = MinMaxScaler()
trainCont = cs.fit_transform(train[continuas])
testCont = cs.transform(test[continuas])
discretas = ['Start_Station_Name', 'End_Station_Name', 'User_Type', 'Genero', 'Hora_inicio']
ohe = OneHotEncoder()
ohe.fit(train[discretas])
trainDisc = ohe.transform(train[discretas])
testDisc = ohe.transform(test[discretas])
trainX = sc.sparse.hstack((trainDisc, trainCont))
testX = sc.sparse.hstack((testDisc, testCont))
return (trainX, testX)
def prepare_targets(df, train, test):
labeled_col = ['RangoEdad']
le = LabelEncoder()
le.fit(train[labeled_col].values.ravel())
trainY …Run Code Online (Sandbox Code Playgroud)