我试图在 Huggingface bert 变压器之后添加一个额外的层,所以我BertForSequenceClassification在我的nn.Module网络中使用。但是,与直接加载模型相比,我看到模型给了我随机输出。
模型 1:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5) # as we have 5 classes
import torch
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode(texts[0], add_special_tokens=True, max_length = 512)).unsqueeze(0) # Batch size 1
print(model(input_ids))
Run Code Online (Sandbox Code Playgroud)
出去:
(tensor([[ 0.3610, -0.0193, -0.1881, -0.1375, -0.3208]],
grad_fn=<AddmmBackward>),)
Run Code Online (Sandbox Code Playgroud)
模型 2:
import torch
from torch import nn
class BertClassifier(nn.Module):
def __init__(self):
super(BertClassifier, self).__init__()
self.bert = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels = 5)
# as we have 5 …Run Code Online (Sandbox Code Playgroud) python-3.x pytorch bert-language-model huggingface-transformers