有没有人有一个实施每个状态网络的工作示例 Tfa.layers.ESN.
目前,我有以下模型
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
_________________________________________________________________
digits (InputLayer) [(None, 41, 4)] 0
_________________________________________________________________
ESN (None, 41, 242) 30492
_________________________________________________________________
flatten (Flatten) (None, 9922) 0
_________________________________________________________________
predictions (Dense) (None, 2) 19846
_________________________________________________________________
Total params: 50,338
Trainable params: 19,846
Non-trainable params: 30,492
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
我遇到的问题是,一旦增加隐藏单元的数量,在训练和测试数据集中,模型的准确性就会下降而不是增加。而且,我得到的准确率非常低。
我正在尝试将 HuggingFace 变压器模型中的 Pegasus 新闻编辑室转换为 ONNX 格式。我遵循了Huggingface 发布的指南。安装先决条件后,我运行了以下代码:
!rm -rf onnx/
from pathlib import Path
from transformers.convert_graph_to_onnx import convert
convert(framework="pt", model="google/pegasus-newsroom", output=Path("onnx/google/pegasus-newsroom.onnx"), opset=11)
Run Code Online (Sandbox Code Playgroud)
并得到这些错误:
ValueError Traceback (most recent call last)
<ipython-input-9-3b37ed1ceda5> in <module>()
3 from transformers.convert_graph_to_onnx import convert
4
----> 5 convert(framework="pt", model="google/pegasus-newsroom", output=Path("onnx/google/pegasus-newsroom.onnx"), opset=11)
6
7
6 frames
/usr/local/lib/python3.6/dist-packages/transformers/models/pegasus/modeling_pegasus.py in forward(self, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask, encoder_head_mask, past_key_values, inputs_embeds, use_cache, output_attentions, output_hidden_states, return_dict)
938 input_shape = inputs_embeds.size()[:-1]
939 else:
--> 940 raise ValueError("You have to specify either …Run Code Online (Sandbox Code Playgroud) 尝试将 t5 模型转换question-generation为torchscript model,同时执行此操作时遇到此错误
ValueError:您必须指定decoder_input_ids或decoder_inputs_embeds
这是我在 colab 上运行的代码。
!pip install -U transformers==3.0.0
!python -m nltk.downloader punkt
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model = AutoModelForSeq2SeqLM.from_pretrained('valhalla/t5-base-qg-hl')
t_input = 'Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>'
tokenizer = AutoTokenizer.from_pretrained('valhalla/t5-base-qg-hl', return_tensors = 'pt')
def _tokenize(
inputs,
padding=True,
truncation=True,
add_special_tokens=True,
max_length=64
):
inputs = tokenizer.batch_encode_plus(
inputs,
max_length=max_length,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding="max_length" if padding else False,
pad_to_max_length=padding,
return_tensors="pt"
)
return inputs
token = …Run Code Online (Sandbox Code Playgroud)