小编dsi*_*mie的帖子

将字符串日期转换为不与Cython和POSIX C库一起使用的纪元时间

我有一个非常大的pandas数据帧,我想创建一个列,其中包含自ISO-8601格式日期字符串的纪元以来的秒数.

我最初使用标准的Python库,但结果很慢.我曾尝试使用POSIX的C库函数来代替这个strptimemktime直接,但一直没能得到的时间转换正确的答案.

这是代码(在IPython窗口中运行)

%load_ext cythonmagic

%%cython
from posix.types cimport time_t
cimport numpy as np
import numpy as np
import time
cdef extern from "sys/time.h" nogil:
    struct tm:
        int tm_sec
        int tm_min
        int tm_hour
        int tm_mday
        int tm_mon
        int tm_year
        int tm_wday
        int tm_yday
        int tm_isdst
    time_t mktime(tm *timeptr)
    char *strptime(const char *s, const char *format, tm *tm)
cdef to_epoch_c(const char *date_text):
    cdef tm time_val
    strptime(date_text, "%Y-%m-%d", &time_val)
    return <unsigned int>mktime(&time_val)
cdef to_epoch_py(const char *date_text):
    return np.uint32(time.mktime(time.strptime(date_text, …
Run Code Online (Sandbox Code Playgroud)

python date epoch cython pandas

5
推荐指数
1
解决办法
681
查看次数

在Mesos上运行的Kafka消费者"无法添加分区的领导者"错误

我正在使用mesos/kafka库运行一个由6个代理组成的Kafka集群.我能够在6个不同的机器上添加和启动代理,并使用Python SimpleProducer和kafka-console-producer.sh脚本将消息发布到集群中.

但是我无法使消费者正常工作.我正在运行以下使用者命令:

bin/kafka-console-consumer.sh --zookeeper 192.168.1.199:2181 --topic test --from-beginning --consumer.config config/consumer.properties --delete-consumer-offsets
Run Code Online (Sandbox Code Playgroud)

在consumer.properties文件中,我将group.id设置为my.group并设置zookeeeper.connect为zookeeper集合中的多个节点.我从运行此消费者获得以下warninng消息:

            [2015-09-24 16:01:06,609] WARN [my.group_my_host-1443106865779-b5a3a1e1-leader-finder-thread], Failed to add l
    eader for partitions [test,4],[test,1],[test,5],[test,2],[test,0],[test,3]; will retry (kafka.consumer.ConsumerFetcherM
    anager$LeaderFinderThread)
    java.nio.channels.ClosedChannelException
            at kafka.network.BlockingChannel.send(BlockingChannel.scala:100)
            at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:78)
            at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:68)
            at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:127)
            at kafka.consumer.SimpleConsumer.earliestOrLatestOffset(SimpleConsumer.scala:166)
            at kafka.consumer.ConsumerFetcherThread.handleOffsetOutOfRange(ConsumerFetcherThread.scala:60)
            at kafka.server.AbstractFetcherThread$$anonfun$addPartitions$2.apply(AbstractFetcherThread.scala:177)
            at kafka.server.AbstractFetcherThread$$anonfun$addPartitions$2.apply(AbstractFetcherThread.scala:172)
            at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
            at scala.collection.immutable.Map$Map1.foreach(Map.scala:109)
            at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
            at kafka.server.AbstractFetcherThread.addPartitions(AbstractFetcherThread.scala:172)
            at kafka.server.AbstractFetcherManager$$anonfun$addFetcherForPartitions$2.apply(AbstractFetcherManager.scala:87)
            at kafka.server.AbstractFetcherManager$$anonfun$addFetcherForPartitions$2.apply(AbstractFetcherManager.scala:77)
            at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
            at scala.collection.immutable.HashMap$HashMap1.foreach(HashMap.scala:224)
            at scala.collection.immutable.HashMap$HashTrieMap.foreach(HashMap.scala:403)
            at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
            at kafka.server.AbstractFetcherManager.addFetcherForPartitions(AbstractFetcherManager.scala:77)
            at kafka.consumer.ConsumerFetcherManager$LeaderFinderThread.doWork(ConsumerFetcherManager.scala:95)
            at kafka.utils.ShutdownableThread.run(ShutdownableThread.scala:60)
    {'some':2}
    [2015-09-24 …
Run Code Online (Sandbox Code Playgroud)

apache-kafka mesos apache-zookeeper

4
推荐指数
1
解决办法
1万
查看次数

标签 统计

apache-kafka ×1

apache-zookeeper ×1

cython ×1

date ×1

epoch ×1

mesos ×1

pandas ×1

python ×1