conda install jupyter尝试从 Anaconda 提示符处安装 jupyter ,引发pin-1 in not installable because it requires python 3.12
我安装了python 3.11,我安装的miniconda版本使用python 3.11。
\n还有其他方法安装jupyter吗?
\n完整的错误回溯:
\nCollecting package metadata (repodata.json): done\nSolving environment: / warning libmamba Added empty dependency for problem type SOLVER_RULE_UPDATE\nfailed\n\nLibMambaUnsatisfiableError: Encountered problems while solving:\n - package jupyter-1.0.0-py27_4 requires python >=2.7,<2.8.0a0, but none of the providers can be installed\n\nCould not solve for environment specs\nThe following packages are incompatible\n\xe2\x94\x9c\xe2\x94\x80 jupyter is installable with the potential options\n\xe2\x94\x82 \xe2\x94\x9c\xe2\x94\x80 jupyter 1.0.0 would …Run Code Online (Sandbox Code Playgroud) 我的数据框结构如下:
group maybe_start maybe_end
0 ABC False False
1 ABC True False
2 ABC False False
3 ABC False False
4 ABC True False
5 ABC False False
6 ABC False True
7 ABC False False
8 DEF False False
9 DEF False False
10 DEF True False
11 DEF False False
12 DEF False True
13 DEF False False
14 DEF False False
15 DEF False True
16 DEF True False
17 DEF False False
18 DEF False True …Run Code Online (Sandbox Code Playgroud) 我正在使用 pandas 版本 1.0.5
下面的示例数据框列出了三天内记录的时间间隔,我寻找每天都有哪些时间间隔重叠的地方。
例如,所有三个日期(黄色突出显示)的重叠时间之一是 1:16 - 2:13。另一个(蓝色突出显示)为 18:45 - 19:00
所以我的预期输出是这样的:[57,15]因为
请使用输入数据帧的生成器:
import pandas as pd
dat1 = [
['2023-12-27','2023-12-27 00:00:00','2023-12-27 02:14:00'],
['2023-12-27','2023-12-27 03:16:00','2023-12-27 04:19:00'],
['2023-12-27','2023-12-27 18:11:00','2023-12-27 20:13:00'],
['2023-12-28','2023-12-28 01:16:00','2023-12-28 02:14:00'],
['2023-12-28','2023-12-28 02:16:00','2023-12-28 02:28:00'],
['2023-12-28','2023-12-28 02:30:00','2023-12-28 02:56:00'],
['2023-12-28','2023-12-28 18:45:00','2023-12-28 19:00:00'],
['2023-12-29','2023-12-29 01:16:00','2023-12-29 02:13:00'],
['2023-12-29','2023-12-29 04:16:00','2023-12-29 05:09:00'],
['2023-12-29','2023-12-29 05:11:00','2023-12-29 05:14:00'],
['2023-12-29','2023-12-29 18:00:00','2023-12-29 19:00:00']
]
df = pd.DataFrame(dat1,columns = ['date','Start_tmp','End_tmp'])
df["Start_tmp"] = pd.to_datetime(df["Start_tmp"])
df["End_tmp"] …Run Code Online (Sandbox Code Playgroud)