我想将 T-sne 功能用于 DBSCAN 聚类算法,但 sklearn 实现未针对 n_components>4 运行。
from sklearn.manifold import TSNE
X = np.array([[0, 0, 0,2, 0, 0,2], [0, 1, 1,53, 0, 0,2], [1, 0, 1,12, 0, 0,2], [1, 1, 1,75, 0, 0,2]])
X_embedded = TSNE(n_components=5).fit_transform(X)
Run Code Online (Sandbox Code Playgroud)
错误:
ValueError Traceback (most recent call last)
<ipython-input-22-79c671f39a06> in <module>
----> 1 tsne_data = model.fit(clustering_ready_data_encoded)
~/anaconda3/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py in fit(self, X, y)
902 y : Ignored
903 """
--> 904 self.fit_transform(X)
905 return self
~/anaconda3/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py in fit_transform(self, X, y)
884 Embedding of the training …
Run Code Online (Sandbox Code Playgroud) 我正在尝试使用校准的分类器运行 XGboost,下面是我遇到错误的代码片段:
from sklearn.calibration import CalibratedClassifierCV
from xgboost import XGBClassifier
import numpy as np
x_train =np.array([1,2,2,3,4,5,6,3,4,10,]).reshape(-1,1)
y_train = np.array([1,1,1,1,1,3,3,3,3,3])
x_cfl=XGBClassifier(n_estimators=1)
x_cfl.fit(x_train,y_train)
sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid")
sig_clf.fit(x_train, y_train)
Run Code Online (Sandbox Code Playgroud)
错误:
TypeError: predict_proba() got an unexpected keyword argument 'X'"
Run Code Online (Sandbox Code Playgroud)
完整轨迹:
TypeError Traceback (most recent call last)
<ipython-input-48-08dd0b4ae8aa> in <module>
----> 1 sig_clf.fit(x_train, y_train)
~/anaconda3/lib/python3.8/site-packages/sklearn/calibration.py in fit(self, X, y, sample_weight)
309 parallel = Parallel(n_jobs=self.n_jobs)
310
--> 311 self.calibrated_classifiers_ = parallel(
312 delayed(_fit_classifier_calibrator_pair)(
313 clone(base_estimator), X, y, train=train, test=test,
~/anaconda3/lib/python3.8/site-packages/joblib/parallel.py in __call__(self, iterable)
1039 # …
Run Code Online (Sandbox Code Playgroud)