我有一个简单的功能
def square(x, a=1):
return [x**2 + a, 2*x]
Run Code Online (Sandbox Code Playgroud)
x
对于几个参数,我想最小化它a
.我目前有循环,在精神上,做这样的事情:
In [89]: from scipy import optimize
In [90]: res = optimize.minimize(square, 25, method='BFGS', jac=True)
In [91]: [res.x, res.fun]
Out[91]: [array([ 0.]), 1.0]
In [92]: l = lambda x: square(x, 2)
In [93]: res = optimize.minimize(l, 25, method='BFGS', jac=True)
In [94]: [res.x, res.fun]
Out[94]: [array([ 0.]), 2.0]
Run Code Online (Sandbox Code Playgroud)
现在,该功能已经过矢量化
In [98]: square(array([2,3]))
Out[98]: [array([ 5, 10]), array([4, 6])]
In [99]: square(array([2,3]), array([2,3]))
Out[99]: [array([ 6, 12]), array([4, 6])]
Run Code Online (Sandbox Code Playgroud)
这意味着并行而不是循环运行所有优化可能要快得多.这是SciPy可以轻松实现的吗?或任何其他第三方工具?
我有非常简单的代码导致我的MySQL数据库挂起:
import sqlalchemy as sa
from sqlalchemy import orm
# creating the engine, the base, etc
import utils
import config
utils.base_init(config)
Base = config.Base
class Parent(Base):
__tablename__ = 'Parents'
id = sa.Column(sa.Integer, primary_key=True)
children = orm.relationship('Child', backref='parent')
class Child(Base):
id = sa.Column(sa.Integer, primary_key=True)
parent_id = sa.Column(sa.Integer)
__tablename__ = 'Children'
__table_args__ = (sa.ForeignKeyConstraint(
['parent_id'],
['Parents.id'],
onupdate='CASCADE', ondelete='CASCADE'),{})
Base.metadata.create_all()
session = orm.sessionmaker(bind=config.Base.metadata.bind)()
p = Parent(id=1)
c1 = Child(id=1)
c2 = Child(id=2)
session.add(p)
session.add(c1)
session.add(c2)
session.commit()
# Works
# Base.metadata.drop_all()
c1.parent
# 2012-08-17 …
Run Code Online (Sandbox Code Playgroud)