我试图弄清楚如何在同一工作流程中结合手动触发器和其他触发器(例如推送)
这是我的手动操作
on:
workflow_dispatch:
inputs:
environment:
type: environment
default: DEV
required: true
env:
ENVIRONMENT: ${{ github.event.inputs.environment }}
.
.
.
Run Code Online (Sandbox Code Playgroud)
我想要类似的东西
on:
push:
branches:
- main
- dev
workflow_dispatch:
inputs:
environment:
type: environment
default: DEV
required: true
env:
ENVIRONMENT: ${{ github.event.inputs.environment }} or {{ DEV if dev }} or {{ PROD if main }}
.
.
.
Run Code Online (Sandbox Code Playgroud) 我试图sklearn.decomposition.TruncatedSVD()在2台不同的计算机上运行,并了解性能差异.
电脑1(Windows 7,物理电脑)
OS Name Microsoft Windows 7 Professional
System Type x64-based PC
Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, 3401 Mhz, 4 Core(s),
8 Logical Installed Physical Memory (RAM) 8.00 GB
Total Physical Memory 7.89 GB
Run Code Online (Sandbox Code Playgroud)
电脑2(Debian,在亚马逊云上)
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
width: 64 bits
capabilities: ldt16 vsyscall32
*-core
description: Motherboard
physical id: 0
*-memory
description: System memory
physical id: 0
size: 29GiB
*-cpu
product: Intel(R) Xeon(R) CPU …Run Code Online (Sandbox Code Playgroud) 是否有一个程序在Windows 7上手动安装Theano for Python 3.4 64bit,而不使用任何捆绑包?
有没有办法在数据分解时确定每个群集的主要功能/术语?
在sklearn文档中的示例中,通过对特征进行排序并与具有相同数量的特征的矢量化器feature_names进行比较来提取顶部术语.
http://scikit-learn.org/stable/auto_examples/document_classification_20newsgroups.html
我想知道如何实现get_top_terms_per_cluster():
X = vectorizer.fit_transform(dataset) # with m features
X = lsa.fit_transform(X) # reduce number of features to m'
k_means.fit(X)
get_top_terms_per_cluster() # out of m features
Run Code Online (Sandbox Code Playgroud) 我想编写一个执行外部脚本(B)的简单脚本(A)
所有这些都应该在不关闭流的情况下完成
py
import subprocess
process = subprocess.Popen(['python', 'B.py'], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
for _ in range(3):
process.stdin.write(b'hello')
print(process.stdout.read())
Run Code Online (Sandbox Code Playgroud)
py
import sys
for line in sys.stdin:
print(line)
Run Code Online (Sandbox Code Playgroud)
输出应为:
>>> b'hello'
>>> b'hello'
>>> b'hello'
Run Code Online (Sandbox Code Playgroud)
问题是A只是在等待
print(process.stdout.read())
Run Code Online (Sandbox Code Playgroud)
如果我通过添加close()来修改A:
for _ in range(3):
process.stdin.write(b'hello')
process.stdin.close()
print(process.stdout.read())
Run Code Online (Sandbox Code Playgroud)
我得到:
>>> b'hello\n'
>>> Traceback (most recent call last):
>>> File "A.py", line 7, in <module>
>>> process.stdin.write(b'hello')
>>> ValueError: write to closed file
Run Code Online (Sandbox Code Playgroud) 我有以下模型,其中 TableA 和 TableB 具有 1 对 1 的关系:
class TableA(db.Model):
id = Column(db.BigInteger, primary_key=True)
title = Column(String(1024))
table_b = relationship('TableB', uselist=False, back_populates="table_a")
class TableB(db.Model):
id = Column(BigInteger, ForeignKey(TableA.id), primary_key=True)
a = relationship('TableA', back_populates='table_b')
name = Column(String(1024))
Run Code Online (Sandbox Code Playgroud)
当我插入 1 条记录时一切正常:
rec_a = TableA(title='hello')
rec_b = TableB(a=rec_a, name='world')
db.session.add(rec_b)
db.session.commit()
Run Code Online (Sandbox Code Playgroud)
但是当我尝试为大量记录执行此操作时:
bulk_ = []
for title, name in zip(titles, names):
rec_a = TableA(title=title)
bulk_.append(TableB(a=rec_a, name=name))
db.session.bulk_save_objects(bulk_)
db.session.commit()
Run Code Online (Sandbox Code Playgroud)
我收到以下异常:
sqlalchemy.exc.InternalError: (pymysql.err.InternalError) (1364, "Field 'id' doesn't have a default value")
Run Code Online (Sandbox Code Playgroud)
难道我做错了什么?模型配置错了吗?有没有办法批量提交这种类型的数据?
python ×5
scikit-learn ×2
flask ×1
installation ×1
mongodb ×1
numpy ×1
performance ×1
python-3.x ×1
sqlalchemy ×1
subprocess ×1
theano ×1
windows ×1