我的CNN比较小
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(input_shape=(400,400,3), filters=6, kernel_size=5, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=12, kernel_size=3, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=24, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2D(filters=48, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2D(filters=96, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Conv2D(filters=128, kernel_size=3, strides=2, padding='valid', activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(240, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy')
Run Code Online (Sandbox Code Playgroud)
我使用以下代码来衡量模型性能:
for img_per_batch in [1, 5, 10, 50]:
# warm up the model
image = np.random.random(size=(img_per_batch, 400, 400, 3)).astype('float32')
model(image, training=False)
n_iter = 100
start_time …Run Code Online (Sandbox Code Playgroud)