小编Ped*_*der的帖子

如何使用accuracy_score(或其他建议的函数)测量xgboost回归器的准确性

我正在编写代码来解决一个简单的问题,即预测库存中物品丢失的概率。

我正在使用XGBoost预测模型来做到这一点。

我将数据分成两个 .csv 文件,一个是训练数据,另一个是测试数据

这是代码:

    import pandas as pd
    import numpy as np


    train = pd.read_csv('C:/Users/pedro/Documents/Pedro/UFMG/8o periodo/Python/Trabalho Final/train.csv', index_col='sku').fillna(-1)
    test = pd.read_csv('C:/Users/pedro/Documents/Pedro/UFMG/8o periodo/Python/Trabalho Final/test.csv', index_col='sku').fillna(-1)


    X_train, y_train = train.drop('isBackorder', axis=1), train['isBackorder']

    import xgboost as xgb
    xg_reg = xgb.XGBRegressor(objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1,
                    max_depth = 10, alpha = 10, n_estimators = 10)
    xg_reg.fit(X_train,y_train)


    y_pred = xg_reg.predict(test)

    # Create file for the competition submission
    test['isBackorder'] = y_pred
    pred = test['isBackorder'].reset_index()
    pred.to_csv('competitionsubmission.csv',index=False)
Run Code Online (Sandbox Code Playgroud)

这是我尝试测量问题准确性的函数(使用 RMSE …

python training-data scikit-learn xgboost k-fold

6
推荐指数
1
解决办法
7358
查看次数

标签 统计

k-fold ×1

python ×1

scikit-learn ×1

training-data ×1

xgboost ×1