小编Rog*_*ers的帖子

tf.keras.losses 中“BinaryCrossentropy”和“binary_crossentropy”的区别?

我正在使用 tf.GradientTape() 使用 TensorFlow 2.0 训练模型,但我发现模型的准确性为95%如果我使用tf.keras.losses.BinaryCrossentropy,但75%如果我使用 则降级为tf.keras.losses.binary_crossentropy。所以我对这里相同指标的差异感到困惑?

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers

from sklearn.model_selection import train_test_split

def read_data():
    red_wine = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", sep=";")
    white_wine = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv", sep=";")
    red_wine["type"] = 1
    white_wine["type"] = 0
    wines = red_wine.append(white_wine)
    return wines

def get_x_y(df):
    x = df.iloc[:, :-1].values.astype(np.float32)
    y = df.iloc[:, -1].values.astype(np.int32)
    return x, y

def build_model():
    inputs = layers.Input(shape=(12,))
    dense1 = layers.Dense(12, activation="relu", name="dense1")(inputs)
    dense2 …
Run Code Online (Sandbox Code Playgroud)

python tensorflow tf.keras

5
推荐指数
1
解决办法
7545
查看次数

标签 统计

python ×1

tensorflow ×1

tf.keras ×1