import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import os
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Flatten, Dropout, Conv2D, MaxPool2D
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import EarlyStopping
train_path = "D:\python_scripts\garbage/garbage/"
img_shape = (437, 694, 3)
df = pd.read_csv("mpd.csv")
scaler = MinMaxScaler()
earlyStopping = EarlyStopping(monitor="val_loss", mode="min", patience=2)
y = df[["methane", "plastic", "dsci"]].values
imgGen = ImageDataGenerator(rotation_range=(20), width_shift_range=(
0.1), height_shift_range=(0.1), zoom_range=(0.2), shear_range=(0.1), fill_mode="nearest")
imgGen.flow_from_directory(train_path)
x = imgGen.flow_from_directory(train_path, class_mode=None,
color_mode="rgb", batch_size=16, target_size=(img_shape)[:0])
model = Sequential()
model.add(Conv2D(filters=128, kernel_size=(3, 3), …
Run Code Online (Sandbox Code Playgroud)