如果我有以下数据框:
A B C D E
1 1 2 0 1 0
2 0 0 0 1 -1
3 1 1 3 -5 2
4 -3 4 2 6 0
5 2 4 1 9 -1
6 1 2 2 4 1
Run Code Online (Sandbox Code Playgroud)
如何添加所有值为“0(零)”的数据帧的行尾?
期望的输出是;
A B C D E
1 1 2 0 1 0
2 0 0 0 1 -1
3 1 1 3 -5 2
4 -3 4 2 6 0
5 2 4 1 9 -1
6 …Run Code Online (Sandbox Code Playgroud) In scipy there is no support for fitting discrete distributions using data. I know there are a lot of subject about this.
For example if i have an array like below:
x = [2,3,4,5,6,7,0,1,1,0,1,8,10,9,1,1,1,0,0]
I couldn't apply for this array:
from scipy.stats import nbinom
param = nbinom.fit(x)
Run Code Online (Sandbox Code Playgroud)
But i would like to ask you up to date, is there any way to fit for these three discrete distributions and then choose the best fit for the discrete dataset?
我有两个这样的数据框:
DATE MAX_AMOUNT MIN_AMOUNT MAX_DAY MIN_DAY RATE
01/09/2022 20 15 10 5 0.01
01/09/2022 25 20 15 10 0.02
03/09/2022 30 10 5 3 0.03
03/09/2022 40 30 20 5 0.04
04/09/2022 10 5 10 1 0.05
ID DATE AMOUNT DAY
1 01/09/2022 18 7
2 01/09/2022 22 11
3 01/09/2022 30 20
4 03/09/2022 35 10
5 04/09/2022 35 10
Run Code Online (Sandbox Code Playgroud)
我想根据日期将 RATE 值带到第二个 df 中。此外,相关日期中的 AMOUNT 和 DAY 值必须在适当的范围内(MAX_AMOUNT 和 MIN_AMOUNT、MAX_DAY 和 MIN_DAY)。
期望的输出如下:
ID DATE AMOUNT DAY RATE …Run Code Online (Sandbox Code Playgroud) 我有一个像这样的数据框:
DURATION CLUSTER COEFF
3 0 0.34
3 1 -0.005
3 2 1
3 3 0.33
4 0 -0.02
4 1 -0.28
4 2 0.22
4 3 0.48
5 0 0.65
5 1 -0.26
5 2 0.1
5 3 0.15
Run Code Online (Sandbox Code Playgroud)
我想根据每个“DURATION”的“COEFF”系数创建一个 RESULT 分类列。具有最大“COEFF”值的将是“第一”,依此类推。
期望的输出如下:
DURATION CLUSTER COEFF RESULT
3 0 0.34 Second
3 1 -0.005 Fourth
3 2 1 First
3 3 0.33 Third
4 0 -0.02 Third
4 1 -0.28 Fourth
4 2 0.22 Second
4 3 0.48 First …Run Code Online (Sandbox Code Playgroud)