我对 CNN 很陌生,一直在关注以下代码。我无法理解我们如何以及为什么选择 Conv2d() 和 nn.Linear () 的每个参数,因为它们是输出、过滤器、通道、权重、填充和步幅。我确实理解每个的含义。有人可以非常简洁地解释每一层的流程吗?(输入图片尺寸为 32*32*3)
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 500)
self.fc2 = nn.Linear(500, 10)
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 4 * 4) …Run Code Online (Sandbox Code Playgroud) python neural-network deep-learning conv-neural-network pytorch