我使用 Chris McCormick 关于 BERT 的教程来pytorch-pretained-bert获得句子嵌入,如下所示:
tokenized_text = tokenizer.tokenize(marked_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [1] * len(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
model = BertModel.from_pretrained('bert-base-uncased')
model.eval()
with torch.no_grad():
encoded_layers, _ = model(tokens_tensor, segments_tensors)
# Holds the list of 12 layer embeddings for each token
# Will have the shape: [# tokens, # layers, # features]
token_embeddings = []
# For each token in the sentence...
for token_i in range(len(tokenized_text)):
# Holds 12 layers of hidden states for …Run Code Online (Sandbox Code Playgroud)