我正在使用卷积神经网络,在使用顺序神经网络时,我在训练数据时遇到了问题。使用顺序是不可能获得最好的分数吗?
from numpy import array
from numpy import reshape
import numpy as np
def model_CNN(X_train,Y_train,X_test,Y_test):
model = Sequential()
model.add(Conv1D(filters=512, kernel_size=32, padding='same', kernel_initializer='normal', activation='relu', input_shape=(256, 1)))
model.add(Conv1D(filters=512, kernel_size=32, padding='same', kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2)) # This is the dropout layer. It's main function is to inactivate 20% of neurons in order to prevent overfitting
model.add(Conv1D(filters=256, kernel_size=32, padding='same', kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Conv1D(filters=256, kernel_size=32, padding='same', kernel_initializer='normal', activation='relu'))
model.add(Flatten())
optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.5)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
convolutional_model = model.fit(X_train, Y_train, epochs=5,batch_size=64,verbose=1, validation_data=(X_test, Y_test))
print(convolutional_model.score(X_train,Y_train))
model.summary()
return …Run Code Online (Sandbox Code Playgroud)