pandas尝试在 VS Code 中导入
import pandas
Run Code Online (Sandbox Code Playgroud)
并得到了
Traceback (most recent call last):
File "c:\Users\xxxx\hello\sqltest.py", line 2, in <module>
import pandas
ModuleNotFoundError: No module named 'pandas'
Run Code Online (Sandbox Code Playgroud)
pandas尝试安装
pip install pandas
pip3 install pandas
python -m pip install pandas
Run Code Online (Sandbox Code Playgroud)
分别返回的
(.venv) PS C:\Users\xxxx\hello> pip3 install pandas
Requirement already satisfied: pandas in c:\users\xxxx\hello\.venv\lib\site-packages (1.1.0)
Requirement already satisfied: pytz>=2017.2 in c:\users\xxxx\hello\.venv\lib\site-packages (from pandas) (2020.1)
Requirement already satisfied: numpy>=1.15.4 in c:\users\xxxx\hello\.venv\lib\site-packages (from pandas) (1.19.1)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\xxxx\hello\.venv\lib\site-packages (from pandas) (2.8.1) …Run Code Online (Sandbox Code Playgroud) 有没有办法在 VS Code Jupyter Notebook 的可滚动窗口中显示输出,例如非常长的数据帧?
我知道按字母“o”可以折叠所有输出。但拥有可滚动窗口仍然更好,因为它允许您在引用其他窗口的同时检查输出。
我也检查了此链接,但无法使其工作。
我试图在 Visual Studio Code 中打印一个情节图并发现了这个错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-40-e07b5feb5ded> in <module>
30
31 fig.update_layout(height=nrows*500)
---> 32 fig.show()
C:\Python38\lib\site-packages\plotly\basedatatypes.py in show(self, *args, **kwargs)
3147 import plotly.io as pio
3148
-> 3149 return pio.show(self, *args, **kwargs)
3150
3151 def to_json(self, *args, **kwargs):
C:\Python38\lib\site-packages\plotly\io\_renderers.py in show(fig, renderer, validate, **kwargs)
383
384 if not nbformat or LooseVersion(nbformat.__version__) < LooseVersion("4.2.0"):
--> 385 raise ValueError(
386 "Mime type rendering requires nbformat>=4.2.0 but it is not installed"
387 )
ValueError: Mime type rendering …Run Code Online (Sandbox Code Playgroud) 我有一个df:
id timestamp data group Date
27001 27242 2020-01-01 09:07:21.277 19.5 1 2020-01-01
27002 27243 2020-01-01 09:07:21.377 19.0 1 2020-01-01
27581 27822 2020-01-02 07:53:05.173 19.5 1 2020-01-02
27582 27823 2020-01-02 07:53:05.273 20.0 1 2020-01-02
27647 27888 2020-01-02 10:01:46.380 20.5 1 2020-01-02
...
Run Code Online (Sandbox Code Playgroud)
我想计算第 1 行和第 2 行之间的时间差(以秒为单位)。我可以用
df['timediff'] = (df['timestamp'].shift(-1) - df['timestamp']).dt.total_seconds()
Run Code Online (Sandbox Code Playgroud)
但是,当我放大仅查看 2 行时,即。row1和row0,代码:
difference = (df.loc[0, 'timestamp'] - df.loc[1, 'timestamp']).dt.total_seconds()
Run Code Online (Sandbox Code Playgroud)
它返回错误
AttributeError:“Timedelta”对象没有属性“dt”
为什么会发生这种情况?
我想在 Python 中打开 Excel 文件,使用:
import xlrd
loc = (r"C:\Users\my_path\my_file.xlsx")
wb = xlrd.open_workbook(loc)
sheet = wb.sheet_by_index(0)
sheet.cell_value(0, 0)
Run Code Online (Sandbox Code Playgroud)
它捕获了错误:
---------------------------------------------------------------------------
XLRDError Traceback (most recent call last)
<ipython-input-70-b399ced4986e> in <module>
4 loc = (r"C:\Users\my_path\my_file.xlsx")
5
----> 6 wb = xlrd.open_workbook(loc)
7 sheet = wb.sheet_by_index(0)
8 sheet.cell_value(0, 0)
C:\Python38\lib\site-packages\xlrd\__init__.py in open_workbook(filename, logfile, verbosity, use_mmap, file_contents, encoding_override, formatting_info, on_demand, ragged_rows, ignore_workbook_corruption)
168 # files that xlrd can parse don't start with the expected signature.
169 if file_format and file_format != 'xls':
--> 170 …Run Code Online (Sandbox Code Playgroud) 我运行了代码
export_path=os.getcwd()+'\\model\\'+'2016'
with tf.Session(graph=tf.Graph()) as sess:
tf.saved_model.loader.load(sess, ["myTag"], export_path)
graph = tf.get_default_graph()
# print(graph.get_operations())
input = graph.get_tensor_by_name('input:0')
output = graph.get_tensor_by_name('output:0')
# print(sess.run(output,
# feed_dict={input: [test_data[1]]}))
tf.train.write_graph(freeze_session(sess), export_path, "my_model.pb", as_text=False)
Run Code Online (Sandbox Code Playgroud)
并导致以下错误
OSError Traceback (most recent call last)
<ipython-input-44-b154e11ca364> in <module>()
3
4 with tf.Session(graph=tf.Graph()) as sess:
----> 5 tf.saved_model.loader.load(sess, ["myTag"], export_path)
6 graph = tf.get_default_graph()
7 # print(graph.get_operations())
3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/loader_impl.py in parse_saved_model(export_dir)
81 (export_dir,
82 constants.SAVED_MODEL_FILENAME_PBTXT,
---> 83 constants.SAVED_MODEL_FILENAME_PB))
84
85
OSError: SavedModel file does not exist at: /content\model\2016/{saved_model.pbtxt|saved_model.pb}
Run Code Online (Sandbox Code Playgroud)
它以前在Windows系统中运行,现在在IOS中运行。我不确定是不是因为这个。任何帮助表示赞赏。谢谢你。
我读过一些大型 csv 文件,这些文件占用了大量 RAM,我注意到它Colab崩溃了一次,我不得不重新运行所有代码。Colab我在睡觉前保存了文件,但是当我醒来时,我前一天添加的代码全部消失了。没有Colab保存我的代码?有没有办法恢复未保存的代码?
我想将 K-Fold 交叉验证应用于我的神经网络模型,如下所示:
from sklearn.model_selection import StratifiedKFold
from numpy import *
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
import numpy
X = df.iloc[:,0:10165]
X = X.to_numpy()
X = X.reshape([X.shape[0], X.shape[1],1])
X_train_1 = X[:,0:10080,:]
X_train_2 = X[:,10080:10165,:].reshape(921,85)
Y = df.iloc[:,10168:10170]
Y = Y.to_numpy()
def my_model():
inputs_1 = keras.Input(shape=(10080,1))
layer1 = Conv1D(64,14)(inputs_1)
layer2 = layers.MaxPool1D(5)(layer1)
layer3 = Conv1D(64, 14)(layer2)
layer4 = layers.GlobalMaxPooling1D()(layer3)
inputs_2 = keras.Input(shape=(85,))
layer5 = layers.concatenate([layer4, inputs_2])
layer6 = Dense(128, activation='relu')(layer5)
layer7 = Dense(2, activation='softmax')(layer6)
model_2 = keras.models.Model(inputs = …Run Code Online (Sandbox Code Playgroud) 我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是921 x 10080. 每行是一个时间序列,总共有 921 个。
在探索可能的方法时,我遇到了各种函数,包括numpy.fft.fft,numpy.fft.fftfreq和DFT... 我的问题是,这些函数对数据集有什么作用,这些函数之间有什么区别?
对于Numpy.fft.fft,Numpy 文档状态:
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT].
Run Code Online (Sandbox Code Playgroud)
而对于numpy.fft.fftfreq:
numpy.fft.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.
The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at …Run Code Online (Sandbox Code Playgroud) 我想将 VSC 中的输出格式从 更改html为plain. 我注意到我可以对单个单元格执行此操作,如下所示,但我想知道是否可以更改整个文件的 settings.json 。我正在使用 Jupyter 笔记本。
python ×9
pandas ×3
numpy ×2
dataframe ×1
datetime ×1
excel ×1
fft ×1
keras ×1
nbformat ×1
plotly ×1
scikit-learn ×1
tensorflow ×1
time-series ×1