小编Law*_*esx的帖子

ValueError:“连接”层需要具有匹配形状(连接轴除外)的输入。获得输入形状:[(无、523、523、32)等

我正在尝试使用以下代码使用 tensorflow 连接层,但出现意外错误。我是张量流新手

inp = Input(shape=(1050,1050,3))
x1= layers.Conv2D(16 ,(3,3), activation='relu')(inp)
x1= layers.Conv2D(32,(3,3), activation='relu')(x1)
x1= layers.MaxPooling2D(2,2)(x1)
x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
x2= layers.Conv2D(64,(3,3), activation='relu')(x2)
x2= layers.MaxPooling2D(3,3)(x2)
x3= layers.Conv2D(64,(3,3), activation='relu')(x2)
x3= layers.Conv2D(64,(2,2), activation='relu')(x3)
x3= layers.Conv2D(64,(3,3), activation='relu')(x3)
x3= layers.Dropout(0.2)(x3)
x3= layers.MaxPooling2D(2,2)(x3)
x4= layers.Conv2D(64,(3,3), activation='relu')(x3)
x4= layers.MaxPooling2D(2,2)(x4)
x = layers.Dropout(0.2)(x4)
o = layers.Concatenate(axis=3)([x1, x2, x3, x4, x])
y = layers.Flatten()(o)
y = layers.Dense(1024, activation='relu')(y)
y = layers.Dense(5, activation='softmax')(y) 

model = Model(inp, y)
model.summary()
model.compile(loss='sparse_categorical_crossentropy',optimizer=RMSprop(lr=0.001),metrics=['accuracy'])

Run Code Online (Sandbox Code Playgroud)

主要错误可以在标题中看到但是我提供了回溯错误以供参考并且错误是

ValueError                                Traceback (most recent call last)
<ipython-input-12-31a1fcec98a4> in <module>
     14 x4= …
Run Code Online (Sandbox Code Playgroud)

python deep-learning keras tensorflow

10
推荐指数
1
解决办法
3万
查看次数

AttributeError: 'Conv2D' 对象没有属性 'shape'

我是 tensorflow 的新手我试图使用 tf.concat 所以我使用了这个布局而不是常规的 Sequential 布局。但我得到的错误是 AttributeError: 'tuple' object has no attribute 'layer' 该错误存在于第二行

inp = Input(shape=(1050,1050,3))
x1= layers.Conv2D(16 ,(3,3), activation='relu')(inp)
x1= layers.Conv2D(32,(3,3), activation='relu')(x1)
x1= layers.MaxPooling2D(2,2)(x1)
x2= layers.Conv2D(32,(3,3), activation='relu')(x1)
x2= layers.Conv2D(64,(3,3), activation='relu')(x2)
x2= layers.MaxPooling2D(3,3)(x2)
x3= layers.Conv2D(64,(3,3), activation='relu')
x3= layers.Conv2D(64,(2,2), activation='relu')(x3)
x3= layers.Conv2D(64,(3,3), activation='relu')(x3)
x3= layers.Dropout(0.2)(x3)
x3= layers.MaxPooling2D(2,2)(x3)
x4= layers.Conv2D(64,(3,3), activation='relu')
x4= layers.MaxPooling2D(2,2)(x4)
x = layers.Dropout(0.2)(x4)
o = layers.Concatenate(axis=3)([x1, x2, x3, x4, x])
y = layers.Flatten()(o)
y = layers.Dense(1024, activation='relu')(y)
y = layers.Dense(5, activation='softmax')(y) 

model = Model(inp, y)
model.summary()
model.compile(loss='sparse_categorical_crossentropy',optimizer=RMSprop(lr=0.001),metrics=['accuracy']) …
Run Code Online (Sandbox Code Playgroud)

python-3.x keras tensorflow

4
推荐指数
1
解决办法
7639
查看次数

标签 统计

keras ×2

tensorflow ×2

deep-learning ×1

python ×1

python-3.x ×1