小编Fat*_*Boi的帖子

RuntimeError: Given groups=1, weight of size [64, 3, 3, 3], 预期输入 [4, 5000, 5000, 3] 有 3 个通道,但得到 5000 个通道

所以,我有一个 U-Net 模型,我将 5000x5000x3 的图像输入到模型中,然后我得到了上面的错误。

所以这是我的模型。

import torch
import torch.nn as nn


def double_conv(in_channels, out_channels):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(out_channels, out_channels, 3, padding=1),
        nn.ReLU(inplace=True)
    )


class UNeT(nn.Module):
    def __init__(self, n_class):
        super().__init__()
        self.dconv_down1 = double_conv(3, 64)
        self.dconv_down2 = double_conv(64, 128)
        self.dconv_down3 = double_conv(128, 256)
        self.dconv_down4 = double_conv(256, 512)
        self.maxpool = nn.MaxPool2d(2)
        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
                                    align_corners=True)
        self.dconv_up3 = double_conv(256 + 512, 256)
        self.dconv_up2 = double_conv(128 + 256, 128)
        self.dconv_up1 = double_conv(128 + 64, 64)
        self.conv_last = nn.Conv2d(64, n_class, …
Run Code Online (Sandbox Code Playgroud)

python image-processing computer-vision deep-learning pytorch

1
推荐指数
1
解决办法
7477
查看次数