我可以使用分类编码和序数编码将目标列转换为所需的有序数值。但我无法执行,inverse_transform因为显示了下面写的错误。
import pandas as pd
import category_encoders as ce
from sklearn.preprocessing import OrdinalEncoder
lst = [ 'BRANCHING/ELONGATION', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'MID', 'MID', 'ADVANCED/TILLERING',
'FLOWERING', 'FLOWERING', 'FLOWERING', 'SEEDLING/EMERGED']
filtered_df = pd.DataFrame(lst, columns =['growth_state'])
filtered_df['growth_state'].value_counts()
EARLY 4
FLOWERING 3
MID 2
ADVANCED/TILLERING 1
SEEDLING/EMERGED 1
BRANCHING/ELONGATION 1
Name: growth_state, dtype: int64
dictionary = [{'col': 'growth_state',
'mapping':{'SEEDLING/EMERGED':0, 'EARLY':1, 'MID':2,
'ADVANCED/TILLERING':3, 'BRANCHING/ELONGATION':4, 'FLOWERING':5 }}]
# instiating encoder
encoder = ce.OrdinalEncoder(cols = 'growth_state', mapping= dictionary)
filtered_df['growth_state'] = encoder.fit_transform(filtered_df['growth_state'])
filtered_df
growth_state
0 4 …Run Code Online (Sandbox Code Playgroud) python machine-learning pandas scikit-learn data-preprocessing