当我尝试使用 metrics.roc_auc_score 时,我得到ValueError: multiclass format is not supported.
import lightgbm as lgb
from sklearn import metrics
def train_model(train, valid):
dtrain = lgb.Dataset(train, label=y_train)
dvalid = lgb.Dataset(valid, label=y_valid)
param = {'num_leaves': 64, 'objective': 'binary',
'metric': 'auc', 'seed': 7}
print("Training model!")
bst = lgb.train(param, dtrain, num_boost_round=1000, valid_sets=[dvalid],
early_stopping_rounds=10, verbose_eval=False)
valid_pred = bst.predict(valid)
print('Valid_pred: ')
print(valid_pred)
print('y_valid:')
print(y_valid)
valid_score = metrics.roc_auc_score(y_valid, valid_pred)
print(f"Validation AUC score: {valid_score:.4f}")
return bst
bst = train_model(X_train_final, X_valid_final)
Run Code Online (Sandbox Code Playgroud)
valid_pred 和 y_valid 是:
Training model!
Valid_pred:
[1. 1. …Run Code Online (Sandbox Code Playgroud) 如何按第一列升序和第二列降序对 NumPy 中的二维数组进行排序?
例如,
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5],
[7, 1, 6]])
Run Code Online (Sandbox Code Playgroud)
结果 :
array([[4, 5, 6],
[7, 1, 6],
[7, 0, 5],
[9, 2, 3]])
Run Code Online (Sandbox Code Playgroud)