谁能解释一下以下python代码的输出:
from theano import tensor as T
from theano import function, shared
a, b = T.dmatrices('a', 'b')
diff = a - b
abs_diff = abs(diff)
diff_squared = diff ** 2
f = function([a, b], [diff, abs_diff, diff_squared])
print f([[1, 1], [1, 1]], [[0, 1], [2, 3]])
Run Code Online (Sandbox Code Playgroud)
print f( [ [1,1],[1,1] ],
[ [0,1],[2,3] ])
Output: [ [[ 1., 0.], [-1., -2.]],
[[ 1., 0.], [ 1., 2.]],
[[ 1., 0.], [ 1., 4.]]]
Run Code Online (Sandbox Code Playgroud) 我正在尝试为Numpy编写的神经网络实现softmax函数.设h是给定信号i的softmax值.
我一直在努力实现softmax激活函数的偏导数.
我目前陷入困境,随着训练的进行,所有偏导数都接近0.我用这个优秀的答案交叉引用了我的数学,但我的数学似乎没有成功.
import numpy as np
def softmax_function( signal, derivative=False ):
# Calculate activation signal
e_x = np.exp( signal )
signal = e_x / np.sum( e_x, axis = 1, keepdims = True )
if derivative:
# Return the partial derivation of the activation function
return np.multiply( signal, 1 - signal ) + sum(
# handle the off-diagonal values
- signal * np.roll( signal, i, axis = 1 )
for i in xrange(1, signal.shape[1] …Run Code Online (Sandbox Code Playgroud) 如果我想创建LSTM网络来解决时间序列预测,我应该如何构建神经网络的隐藏层?
LSTM memory block代表一个隐藏层,层中的所有节点都用cells?表示?LSTM memory blocks这些块的集合将形成一个层?

architecture artificial-intelligence machine-learning neural-network lstm