小编Pri*_*kov的帖子

如何在 keras 中使用 U-net 正确使用批量标准化?

我正在尝试使用带有 U-net 的批量归一化层来进行分割任务。相同的层适用于 res-net、vgg、xception 等,我很好奇这是否是架构相关的问题?在训练期间一切都很好,指标会增加损失 dpor,但是一旦我尝试评估模型或预测掩码,它就会产生垃圾。即使在测试和预测期间,这些层的学习权重似乎也在不断更新。如何在keras中解决这个问题?keras 版本 = 2.2.2

我试图仅在编码器部分使用 Batch norm 层,没有帮助。我也试图设置层参数:trainable=False,没有帮助。

from keras.models import Input, Model
from keras.layers import Conv2D, Concatenate, MaxPooling2D
from keras.layers import UpSampling2D, Dropout, BatchNormalization

def conv_block(m, dim, res, do=0):
    n = Conv2D(dim, 3, padding='same')(m)
    n = BatchNormalization()(n)
    n = keras.layers.LeakyReLU(0)(n)
    n = Dropout(do)(n) if do else n
    n = Conv2D(dim, 3, padding='same')(n)
    n = BatchNormalization()(n) 
    n = keras.layers.LeakyReLU(0)(n)
    return Concatenate()([m, n]) if res else n


def conv_block_bn(m, dim, res, do=0):
    n = Conv2D(dim, 3, …
Run Code Online (Sandbox Code Playgroud)

python deep-learning keras batch-normalization

8
推荐指数
1
解决办法
3114
查看次数